
Distributed Systems

Alexandru Burlacu Autumn 2020

Intro & Course Description

Alexandru Burlacu Autumn 2020

But first...

Alexandru Burlacu Autumn 2020

Congratulations!

Alexandru Burlacu

You’re almost done. Just a little more suffering and you’ll be officially Engineers.

Autumn 2020

Alexandru Burlacu Autumn 2020

Concurrency
primitives +
protocols

Concurrency w/
messages +
streaming

Distributed
systems and their
perils

PR PTR PAD

Alexandru Burlacu Autumn 2020

● Topics - first a quick recap of all we did up to this point, and then how to build distributed

systems (services, DBs, infra), and the icing - What makes distributed systems really hard

● Labs - 1st A microservices-based system, 2nd add support for distributed transactions and

other fancy stuff

● Midterms - two midterms, a lab (70%) + questions (3 Qs = 5 + 15 + 10)

● Exam - oral, 30 min preparation time, <16 min Q&A

● Grading policy - 10 is thresholded at 91 points, the rest are relative, following Gaussian dist.

● Attendance - Doesn’t matter. Just pass the exam and complete the labs on time

Something new

Alexandru Burlacu

Lab projects will be done in groups of 3-4 people, everyone will be responsible for their part
of the project. Lab points will be assigned by team members from a points pool.

Autumn 2020

Alexandru Burlacu

A. Concurrency and Messaging patterns recap
B. Components and patterns of a distributed system
C. Some high level protocols/means of communication
D. A short intro into databases
E. Some useful theory
F. Distributed transactions
G. Maybe some more nice things

Autumn 2020

[Recap] Concurrency

Alexandru Burlacu Autumn 2020

Many Flavors of Concurrency

Alexandru Burlacu Autumn 2020

Remember it from last semester?

Alexandru Burlacu

Recall from last semester our discussions about different flavours of message-passing
concurrency. Actor model? Communicating Sequential Processes? Reactive streams? Anyone?

And then more high level stuff like Message Brokers and all the related patterns? Well, we’ll need
all of it during this semester.

Remember: for distributed systems asynchronous message passing is the way to go!
Only when it isn’t.

Actor Model, CSP, and friends

Autumn 2020

Alexandru Burlacu

Actors:
- Have identities and addresses
- Can communicate if they know the receiver
- Use fire-and-forget type of messaging
- Are sequential in nature but communication enables concurrency
- Are good to represent isolated/safe state, and hiding the information where this state resides
- Are cumbersome when it comes to composition, and generally are quite opinionated
- Are favored among Erlang/Elixir/Scala people. Also available for others. i.e. Project Orleans

from MS

Total recall: Actor Model

Autumn 2020

Alexandru Burlacu

Communicating Sequential Processes are:
- … anonymous and need a channel to communicate
- … formally defined and allow proving some system properties
- … communicating synchronously (with sized channel - async, but not well formalised)
- Are good to represent tasks/actions
- Favored among Golang/Clojure and others too.

Total recall: CSP

Autumn 2020

Alexandru Burlacu

Reactive Streams are:
- … good when it comes to representing streams of events/data
- … especially useful when backpressure is inherent in the system
- … available either us separated projects, like in Elixir, or as RxSomething library
- … liked by front-end/mobile devs
- … becoming popular among microservices devs

Total recall: Reactive Streams

Autumn 2020

[Recap] Messaging
patterns

Alexandru Burlacu Autumn 2020

Alexandru Burlacu

Using a message broker and some other messaging middleware it is possible to build highly
scalable, decoupled systems. What’s not to like.

In fact, this is the first step towards distributed systems.

Let’s recall first one of the fundamental patterns of messaging communication, PubSub.

Messaging Patterns

Autumn 2020

Alexandru Burlacu

A quick reminder of what PubSub is:

You have a set of message/event
creators, let’s call them publishers,
and another set of entities that are
interested in some, or all of the
messages/events, these are
subscribers.

Subscribers can subscribe to
publishers anytime they want and
receive updates as soon as possible.

Publisher-Subscriber

Autumn 2020

Alexandru Burlacu

PubSub is cool, no doubt, but sometimes, when there are many entities involved, it can be
remodeled to decouple things better. Enter the Message Broker.

And while recalling, also think about how a message needs to be (major hint: self-contained) and
what tricks there are to make the message broker resilient to any kinds of mischief (another major
hint: durability and persistence).

Messaging Patterns

Autumn 2020

Alexandru Burlacu

Enter the Message Broker!

Message Broker!

Autumn 2020

Alexandru Burlacu

Topics for
Message Brokers

You can create new topics
either on the producer or
consumer side.

What if the topic is generated
on producer side and there
are no consumer services to
read from it?

Message Broker!!

Autumn 2020

Alexandru Burlacu

Can’t put better than this.

Autumn 2020

http://www.youtube.com/watch?v=aHsVsbo_VOE

Act 1: The (not so) hard things

Alexandru Burlacu Autumn 2020

How do we build Netflix?

Alexandru Burlacu

Or Google/Amazon/Facebook/Insta/whatever

Autumn 2020

Alexandru Burlacu

Well, have you heard about System Design? Or maybe the feared System Design Interview?

This is actually a very common type of question.

Basically, you first ask clarifying questions, then state your assumptions, and based on it make
your best possible decisions (read tradeoffs). So, kinda like our last 2 exams.

And it also involves a lot of drawing of rectangles, arrows and circles.

So how do you do it?

Autumn 2020

Alexandru Burlacu

You need to know
(1) your components,
(2) their trade-offs,
(3) common distributed systems patterns,

(3.1) their trade-offs too, and finally
(4) usually knowledge about databases and generally data-centric systems is needed, like
analytics engines, storages, databases.

We will talk about all this, except from going into details for (4).

P.S. I wasn’t joking in the previous slide, you do need to know all that

Ok, seriously, how??

Autumn 2020

Alexandru Burlacu Autumn 2020

Reactive Manifesto - again

Alexandru Burlacu

Recall Reactive Manifesto, namely its four components.

Recall, it proposes a new mindset of system design, based on asynchronous message passing
for communication, allow decoupled entities to scale up and down, or be elastic, also, because of
the 2 properties, such systems would be resilient against failures, allowing components to fail and
recover independently, and as a result be responsive.

You should reallyk, where k > 1 read it: https://www.reactivemanifesto.org/

Reactive Manifesto - again

Autumn 2020

https://www.reactivemanifesto.org/

Alexandru Burlacu

Transparency, what??

Transparency in the context of human-computer interaction means possibility to alter the internal
behaviour and/or implementation without changing the external interface. In other words,
transparency is actually invisibility.

An example of transparency - when you keep data in your Google Drive you never notice that it
might have changed the server where it is placed. This is both location and migration
transparency.

Main concerns: Transparency

Autumn 2020

Alexandru Burlacu

Some most important types of transparency, for dist. systems at least:
- Access transparency (uniform access)
- Concurrent transparency (true concurrent access)
- Failure transparency (if something breaks, everything else works)
- Location transparency (it can be anywhere)
- Relocation transparency (it can be moved anywhere while working)
- Replication transparency (it can have copies)
- Fragmentation transparency (it is made of fragments)
- Persistence transparency (it can be either on disk or in memory)

Yet the user doesn’t see it/care about it.

Also, `it` refers to both data and processes.

Main concerns: Transparency

Autumn 2020

Alexandru Burlacu

Into some more details, if you need:
- Access transparency – Regardless of how resource access and representation has to be

performed on each individual computing entity, the users of a distributed system should
always access resources in a single, uniform way.

- Location transparency – Users of a distributed system should not have to be aware of
where a resource is physically located.

- Relocation transparency – Should a resource move while in use, this should not be
noticeable to the end user.

- Replication transparency – If a resource is replicated among several locations, it should
appear to the user as a single resource.

Main concerns: Transparency

Autumn 2020

Alexandru Burlacu

Into some more details, if you need:
- Concurrent transparency – While multiple users may compete for and share a single

resource, this should not be apparent to any of them.
- Failure transparency – Always try to hide any failure and recovery of computing entities and

resources.
- Persistence transparency – Whether a resource lies in volatile or permanent memory

should make no difference to the user.
- Fragmentation transparency – Regardless of what a resource is made of (fragments), the

users of a distributed system should always access resources in a single, uniform way.

Main concerns: Transparency

Autumn 2020

Alexandru Burlacu

Q1. If you try to access a file on Google Drive via a link, it’s not working, and notice that the
valid link has changed, what kind of transparency the system is lacking?
a) Location b) Relocation c) Access

Q2. Say, in order to register on a social media service, your request is processed by 3
microservices before giving you a response, and of course you don’t notice that. What kind
of transparency is this?
a) Relocation b) Failure c) Concurrency

Q3. If I have a distributed database that keeps shards of tables on different servers, and
uses optimistic locking, which of the following types of transparency is not valid, given the
description:
a) Failure b) Fragmentation c) Concurrency

Transparency - Quiz Time!! (for practice only)

Autumn 2020

Alexandru Burlacu

One of the primary reasons we do distributed systems is to increase some performance metric(s)
of the overall system, i.e. to scale it.

Scaling:
- Vertical (scaling up), that is make hardware faster, optimize code
- Horizontal (scaling out), that is add more machines to the party

Vertical scaling can get you only so far, so distributed systems are about Horizontal Scalability.

Main concerns: Scalability

Autumn 2020

Alexandru Burlacu

Whenever we have horizontal scaling we need to distribute work among workers.

Load balancing is used solution. For example, you have 3 services, how do you distribute tasks
between them, say connections?

- Round robin (easy, dumb, sometimes bad)
- Least connected (quite easy, better, sometimes not enough)

What if you have sessions and want each user to be “assigned” to just one server, and not float
between all of them?

- Sticky sessions (use hashing, sometimes not good, other times just the right thing)

Main concerns: Scalability

Autumn 2020

Alexandru Burlacu

Modern load balancers usually work on L4 of OSI, that is TCP or UDP, so they are oblivious of
application specific requirements.

That’s where L7 load balancers come into play.

An example of L7 load balancer is one that can use cookies to provide sticky sessions, or knows
that it just received a HTTP/2 connection and not HTTP/1.1.

An example of L4 load balancer would be a much simpler one, like the one used in Kubernetes, or
NGINX.

Why L4 load balancers? It’s simpler and therefore faster.

Main concerns: Scalability

Autumn 2020
*More load balancing algs. here: https://kemptechnologies.com/load-balancer/load-balancing-algorithms-techniques/

https://kemptechnologies.com/load-balancer/load-balancing-algorithms-techniques/

Alexandru Burlacu

Another strategy for scaling a system is to use caches. By now you know what a cache is, so here
are some ways caches can increase the performance of your application:

- Client-side/Browser cache, as to not even touch the network for some data
- CDNs (content delivery networks), as to not touch the server for big binary files, like

minified JS, images, or other media content
- Server-side cache, like Redis, to cache some server results, when frequently queried

[Top to bottom] Hardest to invalidate, cheapest, fastest to deliver

Main concerns: Scalability

Autumn 2020

Alexandru Burlacu

Client-side/Browser cache is one of the cheapest ways to scale a service. In order to do so
effectively, you need to know 2 HTTP Headers, namely Cache-Control and ETag. But there are
more, like Vary.

Let’s start with Cache-Control. Depending on how it’s set it can either not cache at all
(no-store), or cache (private) but only on the browser and so on. Also, depending on how it is
set, it can specify maximum age for a resource, or whenever the client will accept a stale version
of the resource, and optionally how stale can it be.

Cache-Control: private, max-age=604800
Cache-Control: public, max-stale=3600

Main concerns: Scalability

Autumn 2020
More info here: https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching

https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching

Alexandru Burlacu

Now, in regards to Client-side/Browser cache we also mentioned ETag.
Entity Tag, or ETag for short, is a way of checking whenever the resource has changed and
therefore further helps in caching. It works like an optimistic concurrency control system.

Say, you have stored in browser some JSON from a server, this JSON doesn’t change frequently,
and it happens approx. every hour or so, but sometimes it can change even after 3 hours. The
devs used a cache control header to set it’s maximum age to 3600 seconds, and allowed staled
content.

With the help of an ETag: <the etag> that was received, the browser will send a new request
with the If-None-Match: <that same etag> header, and in case the ETags match, the
server will return a very small response with 304 Not Modified status.

Main concerns: Scalability

Autumn 2020
More info here: https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching

https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching

Alexandru Burlacu

In a more formal, and
complete manner, we can
describe distribution,
scalability, availability, and
even fault tolerance (later on
these) through the prism of
“The Scale Cube” or
“AKF Cube”

Autumn 2020
*Source: https://akfpartners.com/growth-blog/scale-cube

Main concerns: Scalability

https://akfpartners.com/growth-blog/scale-cube

Alexandru Burlacu

The Scale Cube can be used to guide scaling initiatives within an organization. Keep in mind that
scaling on Z- and especially Y-axis is more often than not also an organizational challenge (read,
hard to implement).

In case you didn’t quite get the diagram, find the explanation of each axis below.

X-axis: clone/replicate data/processes
Y-axis: functional decomposition, as in microservices
Z-axis: sharding, or data/process splitting by some attribute, could be location, user type or
something else

Main concerns: Scalability

Autumn 2020
More info here: https://akfpartners.com/growth-blog/scaling-your-systems-in-the-cloud-akf-scale-cube-explained

https://akfpartners.com/growth-blog/scaling-your-systems-in-the-cloud-akf-scale-cube-explained

Alexandru Burlacu

This is Flynn’s Taxonomy (as a reminder).

SISD - single instruction, single data
SIMD - single instruction, multiple data
MISD - multiple instruction, single data
MIMD - multiple instruction, multiple data

Also consider:
SPMD and MPMD, where instead of Instructions
(I), Programs (P) are considered, relaxing the
lockstep requirement.

Note: we relax the lockstep requirement
Source: PAD course, “Distributia: spatii de decentralizare”, conf. univ. Ciorba Dumitru

Autumn 2020

Main concerns: Scalability

Alexandru Burlacu Autumn 2020

Recall the Universal Scalability Law. It states, and reasonably so, that as the number
cores/machines computing something in a parallel/concurrent fashion grows, at some point not
only the system will scale slower, but in fact the performance will degrade.

What does it mean for us?

To achieve maximum scalability, we need to design systems that (1) seldom need to communicate
and (2) can be reasonably distributed among as many workers as possible.

Main concerns: Scalability

Alexandru Burlacu

Q1. Say, we have a site that even if we don’t have access to the Internet some part of it can
still be loaded in our browsers, given it was recently accessed (<1day). What kind of caches
were used?
a) Client-side b) CDN c) Server-side

Q2. What are the benefits of using a CDN?
a) Lower latency b) Offloading main servers c) Cheapness

Q3. Why using a cache increases scalability of a system?
a) Minimizes computations b) Is closer to the user c) Speeds-up computations

Scalability - Quiz Time!! (for practice only)

Autumn 2020

Alexandru Burlacu

Distributed systems are treacherous. Because a lot of issues are already dealt with (kinda) and
abstracted away, programmers tend to fall for the following fallacies:

1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous.

8 misconceptions about Distributed Systems

Autumn 2020
Consider reading this: www.rgoarchitects.com/Files/fallacies.pdf

http://www.rgoarchitects.com/Files/fallacies.pdf

Alexandru Burlacu

As a result we can have the following issues:

1. The network is reliable: Never, things break, and not taking it into account will cause a lot
of incredible network bugs. See xkcd.com/2259/

2. Latency is zero: Ofc, and unicorns are real. We are limited by the speed of light, not taking it
into account will lead to premature timeouts, and bandwidth inefficiencies in general

3. Bandwidth is infinite: Nah, and if you think so good luck explaining why the network is
congested

4. The network is secure: Nope, and assuming so exposes the system to great risks
5. Topology doesn't change: It does, and as a result it affects latency and bandwidth
6. There is one administrator: Configuration and policy conflicts, hidden issues
7. Transport cost is zero: Projects may overrun their budgets
8. The network is homogeneous: See first three issues

8 misconceptions about Distributed Systems

Autumn 2020

https://xkcd.com/2259/

Alexandru Burlacu

Usually we think about computer networks being like direct connections between parties. Even if
we know that there are routers and switches and cables with limited capacity between us and the
destination, we still somehow believe we connect directly over a dedicated channel.

!!!And that’s a wrong mental model!!!

<- What we VS Reality ->
believe

We treat the network wrong

Autumn 2020

Alexandru Burlacu

Now, assuming we dealt with scalability, how to we ensure that when things get stormy, we are
still up and running?

For that we need to think about resiliency of our systems.

Resiliency means that it can keep running despite issues and failures. Therefore, a resilient system
is not failure-proof but rather failure-tolerant.

Note that ideally we would like systems that are failure-thriving, or antifragile, but in order to
achieve this we need a good development and operating workflow, and that’s beyond our scope.

Main concerns: Resiliency

Autumn 2020

Alexandru Burlacu

Just as with scalability, one of the primary tools we can use to ensure our systems are failure
tolerant is having redundancy in our systems, i.e. replication.

How does this work? Easy - we just have copies of our data and services, such that in case we
lose particular instances, we still have our “backups”.

For example, we can replicate our databases in case some database instances fail.
Or, we could have multiple copies of our services, to ensure that if some server dies, the whole
system continues to work.

This strategy is also known as High Availability setup.

Main concerns: Resiliency

Autumn 2020

Alexandru Burlacu

But now the question is, if we fail, how does our backups proceed?

For that we need failover strategies, and normally there are two:
- Active-active: have both the primary and secondary system running, if primary fails,

immediately direct the traffic to the secondary
- Active-passive: have only the primary system running, if it fails, launch the secondary

system and start receiving all the traffic on it

… and of course there are trade-offs. Can you tell what are they?

Main concerns: Resiliency

Autumn 2020

Alexandru Burlacu

Well, active-passive failover is cheaper, but slower to react and with more points of failure.
Active-active is more expensive, but much faster and actually a safer bet.

But replication and failover are not the only ways we can achieve HA/Resiliency.

We also need to ensure we know when things go off-rails, as they happen, even if for the user its
transparent.

For this we need observability in our systems.

Main concerns: Resiliency

Autumn 2020

Alexandru Burlacu

Observability, what is it? Basically, the property of a system to be understood, or how well can
one infer its internal state from external outputs. It’s a spectrum, and depending where on it our
system stands, we can use monitoring and alerting more or less efficient.

In other words, if a system is observable we can understand what is happening within it from its
outputs. We need to design observable systems. And to aid us in this we have logs.

Logs are the bread and butter of monitoring and observability.

With good logs we can do performance monitoring, incident analysis, or debugging, and tracing.

Main concerns: Resiliency via Observability

Autumn 2020

Alexandru Burlacu

How our logs should be?

- Hierarchical: we need to respect the distinction between DEBUG/INFO/WARNING/ERROR
levels, and not to crowd the system with WARNING logs when INFO or DEBUG are more
appropriate. Not-to-crowd also refers to how much information a log contains.

- Filtrable: logs are meant to be analyzed. Make them as searchable as possible. Consider
formatting them as JSONs, and don’t abuse nesting.

For performance monitoring consider DEBUG logs that contain execution time of your code. If you
add correlation IDs to these logs and pass them between services, now you have a form of
tracing. Tracing will help you find bottleneck services, and sometimes even aid you in debugging
distributed systems.

Main concerns: Resiliency via Observability

Autumn 2020

Alexandru Burlacu

Alright, we figured out how to survive failures, but it’s always a good idea to not test our fortune,
and design systems with a lesser chance of failure. Reliability of our systems is still a concern.

There’re many ways in how we can make our systems more reliable, but here are 3 patterns for it:
- Retry policies
- Circuit breakers
- Bulkheads

Main concerns: Resiliency and Reliability

Autumn 2020

Alexandru Burlacu

Imagine, service A tries calling service B for some data, and after a short timeout, it fails. Most
likely service B had some transient issues or the network is slow. What should service A do?

A lot of the times, the reasonable answer is to retry. Some popular retry policies are: retry with a
delay and exponential backoff.

The simple retry is, well, simple. But sometimes it is more reasonable to use the exponential
backoff, in order to minimize the number of retries, therefore allowing the service to do other stuff
instead.

Basic example of an exponential backoff: service A after initial fail to access B, waits for 2 seconds
and calls it again, if it fails again, A will wait for 4 seconds, and if failure occurs again, for 8
seconds, and so on...

Main concerns: Resiliency and Reliability

Autumn 2020

Alexandru Burlacu

… and on, and on. If you’re thinking that it is stupid to retry on and on again ad infinitum like this is
stupid, you’re right.

That’s where Circuit Breakers come into play. You can think of them as an extension to the retry
policies.

Circuit breakers are meant to limit the number of retries in cases where the failure is not gone
quickly. You can think of it as some sort of fail-fast. In case of services A and B, circuit breaking
could be triggered in case B is not responsive on numerous occasions, possibly due to a complete
failure of the service.

Waiting for this kind of issues to be fixed is unreasonable, thus defaulting to an error is prefered.

Main concerns: Resiliency and Reliability

Autumn 2020

Alexandru Burlacu

And finally, Bulkheads.

A bulkhead actually means an upright partition separating compartments, like in boats and ships.
And modern ships use bulkheads not just for increased structural strength, but also to be able to
withstand partial floodings, separating flooded compartments from the dry ones.

In system design a bulkhead is more or less the same. It limits the amount of resources given per
service/functionality/task and isolates it, thus in case some issue happens either on client or
server side, we won’t have all the resources consumed on it, only a predefined amount.

Main concerns: Resiliency and Reliability

Autumn 2020

Alexandru Burlacu

We are going to need to define our services, be they micro- or macro-; then, we will need to define
their APIs.

Most of the time it is recommended for a single microservice to have it’s own DB. Sometimes,
sharing is ok. For example when having very related services. Or for legacy reasons. Following is a
list of service-database relationship, from best case to worst:

- Database-per-Service
- Schema-per-Service
- Tabel-per-Service

First things (almost) first: Services

Autumn 2020
Consider reading this: https://cloudncode.blog/2016/07/22/msa-getting-started/

https://cloudncode.blog/2016/07/22/msa-getting-started/

Alexandru Burlacu

Having microservices it is common/recommended to use a so-called Reverse Proxy in front of a
microservice. Why?

First things (almost) first: Services

Autumn 2020
Consider reading this: https://cloudncode.blog/2016/07/22/msa-getting-started/

https://cloudncode.blog/2016/07/22/msa-getting-started/

Alexandru Burlacu

A reverse proxy is a dedicated server that provides multiple benefits at the cost of increased
complexity.

NGINX is a reverse proxy, what does that mean?

It means that NGINX can be used for load balancing, static resource serving (HTML/CSS/Images),
traffic compression, but also failover and a lot of other stuff.

So it’s a load balancer on steroids.

First things (almost) first: Services

Autumn 2020

Alexandru Burlacu

Before we dive any deeper, how do you adopt microservices?

First - most of the time you should never start with microservices! Because this way you’re
violating the YAGNI principle. Maybe the project will fail and all the complexity wasn’t necessary?
Or maybe, the project will fail because it was complex and too slow to validate. Start with a well
designed monolith.

Software should the thought of as growing, rather than being designed. Change is the only thing
that’s certain.

First things (almost) first: Services. How to adopt?

Autumn 2020

Alexandru Burlacu

Before we dive any deeper, how do you adopt microservices?

Now let’s say that you built your monolith, and it was successful, and you have to scale using
microservices. How?

Enter the Strangler pattern.

The idea is rather simple - put a façade in front of your system, and gradually split the monolith
into multiple services, the façade will ensure that the users won’t notice.

First things (almost) first: Services. How to adopt?

Autumn 2020
More info: https://docs.microsoft.com/en-us/azure/architecture/patterns/strangler

https://docs.microsoft.com/en-us/azure/architecture/patterns/strangler

Alexandru Burlacu

Once we have APIs and our services up and running, the last thing we want is for the client to be
concerned about the existence of many services within our system.

Solution: use an API Gateway
or its more advanced variant: BFF (backend-for-front-end)

First things (almost) first: Information hiding

Autumn 2020

Alexandru Burlacu

An API Gateway is a centralised point of access for all/most of your services.

Think of it as the Façade pattern, only for the microservices world. Basically it’s a single point of
access, sometimes it might contain additional logic like authentication and maybe some
cross-service logic, like simple aggregations.

Normally the later is recommended to be done on separate microservices, but with a small system
this could be acceptable.

First things (almost) first: Information hiding

Autumn 2020

Alexandru Burlacu

Now, BFF or Backend-For-Frontend is basically an API Gateway, tuned for a specific type of client.
Initially used at Spotify, it is common to have BFFs for mobile clients, web clients and sometimes
dedicated BFF for the API.

BFFs allow to even have multiple types of APIs/protocols for different clients.

For example for the web API HTTP/2 can be used, maybe in combination with GraphQL. While for
an Android client, gRPC or Thrift RPC technologies can be used.

The downside of a BFF - well, there’s more code to maintain.

First things (almost) first: Information hiding

Autumn 2020

Alexandru Burlacu

There’s an issue with splitting a monolithic codebase into microservices. How do we locate the
stuff we need?

In local systems we know for sure what is where. Not so much in case we run things on multiple
servers. Now, take into account that servers might fail and be restarted, we could scale some
instances and not others, when traffic surges, and we should also be able to migrate things.

With this dynamic context, we can’t rely on hardcoded addresses for our services.

What do we do?

The unnamed hero - Infrastructure: Service discovery

Autumn 2020

Alexandru Burlacu

We do what is called service discovery. It’s not a new thing. Remember DHCP? Also partially the
problem of service discovery is solved by DNS and ARP protocols. But all these are related to
low-level, networking technologies. We are now in the realm of services.

So the basic idea is the following, we have a dedicated registry where we keep all the information
about how to access a given service. When a service launches, it registers (either itself, or via
some 3rd party) to the service discovery registry.

Now, how do we find the concrete address of the service?

There are 2 ways: client-side service discovery and server-side service discovery.

The unnamed hero - Infrastructure: Service discovery

Autumn 2020

Alexandru Burlacu

Client-side SD (blue) assumes we have a
service registry (SR) aware client that first
asks it about the location of the service of
interest and then makes the request.

Server-side SD (green) uses an intermediary,
for example a reverse proxy, to perform the
duties of the SR-aware client. Client has to
just call the service by name, the intermediary
will find the address of it and forward the call.

The unnamed hero - Infrastructure: Service discovery

Autumn 2020

Alexandru Burlacu

The unnamed hero - Infrastructure: Healthchecks

Autumn 2020

Whenever we do client-side or server-side
SD, how do we make sure that the address
we’re getting is of a server that’s up and
running?

For that we have healthchecks (caller checks
if server is up), or heartbeats (server notifies
the caller that it’s up), depending how the
information is sent. In our case, the caller is
SR.

Alexandru Burlacu

Service meshes are on the forefront (read hype) of microservice infrastructure. Remember reverse
proxies?

Imagine every service gets a reverse proxy through which every request goes through, and it is
now possible to monitor all the traffic, use circuit breakers and request pipelining whenever
possible/necessary.

Not only that, but depending on the exact tool one uses, it is also possible to route traffic, do
autoscaling of the instances, for load balancers/reverse proxies are already in place.

Even chaos engineering is now possible, by injecting failures into the system.

An example of service mesh is Istio, there’s also Consul which can be adapted for this.

The unnamed hero - Infrastructure

Autumn 2020

Alexandru Burlacu

REST or REpresentational State Transfer is one of the most widely acknowledged (not as much
properly implemented) interaction patterns used when it comes to high level communication.

In fact, REST is an architecture for networked systems, that is defined by its constraints.

There are 6 main constraints for REST:
- Client-server architecture
- Statelessness
- Uniform interface
- Cacheability
- Layered system
- Code-on-demand (optional)

Communication means: REST

Autumn 2020

Alexandru Burlacu

Before we dive into REST constraints, first we need to understand why it exists and even what
does it mean.

Let’s dissect the name - representational state transfer.

- Representational: a RESTful service will send a negotiated representation of the resource
the client wants. For example, we won’t show the Java code or some binary representation
of the User, rather, a JSON with content about it.

- State: REST APIs must send the state of the session within the request, and never store it on
the server.

- Transfer: REST APIs transfer entire data back to the client, not some reference to it. You get
a JSON not some ID by which to modify the object somewhere on the server.

Communication means: REST

Autumn 2020

Alexandru Burlacu

So what does all of these constraints mean?

Client-server architecture means there’s a client, requesting something and a server that
provides specific services. Making this distinction goes naturally with how the Web is built.

Given that REST was designed to handle the requirements of a decentralized, always evolving
Internet, performance is crucial. Also, given the client-server interaction, where clients are
considerably more numerous compared to servers, statelessness provides easier scalability, thus
increased performance.

Also, stateless servers aid in debuggability, by making it possible to understand the state of the
system by just looking at the request.

Communication means: REST

Autumn 2020

Alexandru Burlacu

Uniform interface means that whenever we are trying to access a document, binary file, some
dynamic content or even write to some location, we are provided with an easy, uniform interface.

REST relies on URIs for this, and the author, Roy Fielding, recommends using resource names for
the URIs, not actions done on them. A resource in REST parlance is the entity we want to interact
with. Again, it could be something materialized, like a file, or dynamic, like the time of day at the
moment of call.

Coming back to performance and scalability concerns, and given that we already have stateless
servers, cacheability is another desired property for a large scale information distribution system,
which REST is primarily designed for.

Communication means: REST

Autumn 2020

Alexandru Burlacu

Finally, we have the the possibility to make our systems layered, for example given a request, it
might go through some firewall, then gateway, than one service, and then another. All of this is
done in a easy, transparent way.

In a way, layering, in combination with the other constraints so far, makes it possible to interpret
REST as another architectural pattern, uniform pipes-and-filters.

Layering is necessary to keep the complexity of the systems at bay.

Communication means: REST

Autumn 2020

Alexandru Burlacu

And finally, the last, optional constraint, Code-on-demand.

It is optional because of the fact that its non-trivial to implement, and not always necessary.
Casually, code-on-demand is implemented as HATEOAS (Hypermedia as the engine of
application state), but isn’t necessarily HATEOAS.

Code-on-demand is in fact a mobile code paradigm that states that it is possible to send the client
additional code to extend its functionalities or further reduce the required knowledge to interact
with the system. Sounds familiar?

Yup, code-on-demand is basically JS, or for older web applications - Java Applets.

Communication means: REST

Autumn 2020

Alexandru Burlacu

By now maybe you know that REST, and generally HTTP, is not the only way to connect
distributed services. An entirely different paradigm are RPCs and Remote Objects.

RPC, or remote procedure call, sometimes, more in regard to Remote Objects, it is known as RMI,
remote method invocation, is a way to call operations that are location transparent. RPCs were
once proposed as a more abstract way to build software, but its scope was its own peril.

Abstracting away the fact that a call might be done using the network, thus taking orders of
magnitude more time to complete is a bad idea, that’s the reason it felt out of grace, until now.

Communication means: Not just REST

Autumn 2020

Alexandru Burlacu

More recently, RPC re-entered the scene as a more performant, even if less flexible alternative to
REST. Prominently, new kinds of RPC like gRPC and Apache Thrift are used by big corporations
like Google and Facebook, respectively, when performance is important and developers are in
control of both clients and servers.

The reason why new generation of RPCs are more successful than the old ones, like CORBA and
SOAP protocol, are because they are more lightweight, API-wise, and they do distinguish between
local and remote calls.

Communication means: Not just REST

Autumn 2020

Alexandru Burlacu

Finally, let’s discuss Remote Objects, as the next step from RPC. Disclaimer, the approach is not
so popular anymore, with a but.

So, Remote Objects’ basic idea is: to abstract away the location, and possibly the number, of an
object, in OOP sense. If RPCs abstract away the location of a function/operation, Remote Objects
abstract away the location of an object (operations+data).

Cap’n’Proto is a modern revision of this approach, while CORBA and DCOM are some old
variants.

Communication means: Not just REST

Autumn 2020

Alexandru Burlacu

Previously, I said that remote objects are not used anymore, at least not as much, with a but…

The “but” is, they actually are, but in the form of SDKs for different services. Basically, if you
provide an OOP SDK for some remote service, you’re halfway there. Of course, this is an
oversimplification, but it helps understand that it’s not such a dead idea.

Remote objects are usually replicated and use peer-to-peer communication to achieve
consistency.

Communication means: Not just REST

Autumn 2020

Alexandru Burlacu

SOAP is known for… killing bacteria off your hands.

Jokes aside, SOAP, or Simple Object Access Protocol, is a standard for RPC communication via
HTTP (mainly) and using XML schema definition and for transport too.

Basic idea is that using a SOAP framework, and having the schema for your API in WSDL (Web
Service Description Language), it can generate your stubs + input validation, and all you’re left
with is to implement controllers.

SOAPs benefits are compatibility with current Internet stack, and transport and language
independence made it a popular choice, even if outdated today. The usage of WSDL was actually
considered not so good, because it became very verbose.

Communication means: SOAP and REST

Autumn 2020

Alexandru Burlacu

Even if SOAP is mostly obsolete today, and people prefer REST, some ideas were refurbished.
Like WSDL. As Swagger/OpenAPI.

Don’t get me wrong, Swagger was primarily developed for API documentation and testing, but, it
is possible to use it to generate client and server stubs + validation + models + security (partially).

Swagger became popular because of its optionality. You don’t have to use it, neither you must use
all the possible features it can give you. Besides, it’s not using XML, and for a lot of people this is
a plus too.

The takeaway: even if the technology failed, doesn’t mean that some of its concepts were
bad.

Communication means: SOAP and REST

Autumn 2020

Alexandru Burlacu Autumn 2020*Painting: Looking Down Yosemite Valley, California, Albert Bierstadt

Key value stores

Object Databases

Column stores

Graph Databases

Document Databases

Search Engine

Triplestore/RDF

Wide Column stores

Alexandru Burlacu

NoSQL is like the painting above, a lush, beautiful and diverse landscape. NoSQL basically means
everything that is not SQL/Relational.

Again, there are multiple NoSQL types but the most basic one is a Key Value Store, like Redis, or
your good ol’ HashMap. KV Stores are quite diverse in practice, ranging from simple ones like
Memcached used for caching, and up to Riak, Apache Ignite and Aerospike which provide some
consistency guarantees (Riak) and even support ACID transactions (Aerospike) and joins (Apache
Ignite).

KV stores are also very performant but lack in functionality, compared to other types.

Crash course into (NoSQL) DBs

Autumn 2020

Alexandru Burlacu

Then, there are document databases, like Mongo and Couchbase, and some would say Elastic
also belongs in here, but more on that later.

Document Databases can be thought as more advanced KV stores, with the difference that for a
KV store the content of the database is not important/relevant/used, whilst for document ones, the
database is aware of its contents and can provide richer functionality based on this.

Basically with a canonic document database it is possible to query and filter based on the content
of the document and its structure, where for a KV store this possibility is limited.

Crash course into (NoSQL) DBs

Autumn 2020

Alexandru Burlacu

Elastic was mentioned as somewhat a document database. In principle it could be, because it can
store information schemaless, is aware of the structure of documents and can query and filter
based on that. But Elastic is actually a search engine.

Tools like Elastic, Sphinx or Lustre, or Solr, are using a very special data structure, called inverted
index, to be able to do full text searches. How does this work?

Crash course into (NoSQL) DBs

Autumn 2020

Alexandru Burlacu

A simple index will look something like this:
{
“file1.txt”: “hello darkness, my old friend”,
“file2.txt”: “I've come to talk with you again”,
“file3.txt”: “because a vision softly creeping”,
“file4.txt”: “left its seeds while I was sleeping”,
“file99.txt”: “I was sleeping all day with a deadline running up”
}

While an inverted index for the same dataset will look like this:
{
“hello”: [“file1.txt”],
“I”: [“file2.txt”, “file4.txt”, “file99.txt”],
…
“sleeping”: [“file4.txt”, “file99.txt”]
}

Crash course into (NoSQL) DBs

Autumn 2020

Alexandru Burlacu

Before we touch the big guns, graph and object databases, there’s one more we need to discuss,
column stores. Such technologies as Druid, HBase and Cassandra are the open source form of
column databases. So what’s so special about them?

Let’s dissect what are they made of.

First, they are, just like document databases, an improvement over key value stores. But the
difference is how the data is stored in there. Every “key” in such a database is the column name,
while the value is a collection of values for the given column. As a result, these databases are
blazing fast when it comes to reading speeds. They are also very fast for analytic queries.

Among other benefits, they are very easy to apply compression to.

Crash course into (NoSQL) DBs

Autumn 2020

Alexandru Burlacu

Remember I told you Cassandra and HBase are column stores? I lied, a bit, technically.

They are Wide Column Stores. Which means they combine both row-based and column based
approaches. They are based on the Google Bigtable paper, which I highly recommend reading,
beware, it is very technical.

Crash course into (NoSQL) DBs

Autumn 2020

*Source: https://database.guide/what-is-a-column-store-database/
Also check out: https://www.saumitra.me/blog/how-cassandra-stores-data-on-filesystem/
 https://www.youtube.com/watch?v=HaEPXoXVf2k

https://database.guide/what-is-a-column-store-database/
https://www.saumitra.me/blog/how-cassandra-stores-data-on-filesystem/
https://www.youtube.com/watch?v=HaEPXoXVf2k

Alexandru Burlacu

Whatever the DB kind we use, there are always scalability issues. For most of our
application-related services, we read more than we write, so the bottlenecks are read
latency/throughput.

A way to solve it is just like with services, by replication. Only with some quirks.

A common architecture is to have read and write databases, where we replicate the read ones,
and enable synchronization between write and read copies. To make sure we don’t lose our
consistency guarantees, quick synchronous update is possible. Enter so-called master-slave
replication. Or leader-follower.

Crash course into DBs, and storage

Autumn 2020

Alexandru Burlacu

The principle is fairly simple.

Have all writes go to a single server, then
propagate them to the rest. Read only from the
slave/followers.

If master/leader crashes, choose another
instance as the new leader

Crash course into DBs, and storage

Autumn 2020

*Source: https://www.toptal.com/mysql/mysql-master-slave-replication-tutorial

https://www.toptal.com/mysql/mysql-master-slave-replication-tutorial

Alexandru Burlacu

What if now the writes are also plenty?

Multi-master replication to the rescue (kinda).

Multi-master replication is like Marvel’s
Avengers. They might save the day, in the
process severely damaging everything else,
leaving you wandering, was it even worth it?

Crash course into DBs, and storage

Autumn 2020

*Source: https://www.percona.com/blog/2020/06/09/multi-master-replication-solutions-for-postgresql/

https://www.percona.com/blog/2020/06/09/multi-master-replication-solutions-for-postgresql/

Alexandru Burlacu

If you thought that so far the approach doesn’t seem very memory efficient, to keep entire copies
of the database running, you are right, it isn’t. Meet partitioning. And all it’s flavours.

So what’s the difference between partitioning and replication. Partitioning still requires multiple
instances, just like replication, only now the content of each instance is different, thus we don’t
waste space.

There are primary 2 types of partitions, horizontal and vertical.

- Horizontal partitioning implies storing subsets of a table, split by row, in different locations.
- Vertical partitioning implies storing same data but split into multiple tables by column.

Normalization if a form of vertical sharding.

Crash course into DBs, and storage

Autumn 2020

Alexandru Burlacu

Horizontal partitioning is sometimes known as
sharding, and is a great enabled for horizontal
scaling.

Horizontal partitions can be done at application
level and there are different methods to decide
how to partition.

Some database servers have partitioning
functionality.

Crash course into DBs, and storage

Autumn 2020

*Source: https://www.digitalocean.com/community/tutorials/understanding-database-sharding

https://www.digitalocean.com/community/tutorials/understanding-database-sharding

Alexandru Burlacu

When done on a single database, and sometimes even in a distributed environment, partitions help
perform queries faster. Why?

Partitions can be done based on input hash, these are so called hashing or key partitions.

Or on some value (lookup) or range, like all entries for February have their own table. Or all entries
that have the order final price between 15 and 50 USD have a dedicated table.

Beware, sharding also can cause inconsistencies in your system. Check the Pinterest blogpost on
how they sharded and scaled their MySQL fleet to get an impression of what can go wrong.

Crash course into DBs, and storage

Autumn 2020

For more info: https://stackoverflow.com/questions/18302773/what-are-horizontal-and-vertical-partitions-in-database-and-what-is-the-differen
 https://docs.microsoft.com/en-us/azure/architecture/patterns/sharding
https://medium.com/pinterest-engineering/sharding-pinterest-how-we-scaled-our-mysql-fleet-3f341e96ca6f

https://stackoverflow.com/questions/18302773/what-are-horizontal-and-vertical-partitions-in-database-and-what-is-the-differen
https://docs.microsoft.com/en-us/azure/architecture/patterns/sharding
https://medium.com/pinterest-engineering/sharding-pinterest-how-we-scaled-our-mysql-fleet-3f341e96ca6f

Alexandru Burlacu

NoSQL, as you might have figured out by now,
has a very different data model than classic
relational databases. Before we dive into it, we
need to understand why NoSQL even exists,
and is so different from relational model.

Relational databases were invented in the
beginning of 70s, when storage looked like on
the right, could store a couple of MB and had a
price tag in the order of 100.000s of USD.

Storage was expensive.

NoSQL data modeling

Autumn 2020

*Source: The first Winchester: IBM 3340 Storage System, 1973, up to 70MB

Alexandru Burlacu

High storage costs were one of the two reasons
why people strive for normalization. Second one
is to easy the enforcement of functional
constraints.

Normalization is reduction of data duplication,
basically.

So in order to satisfy users, we need to do
many joins.

But what if storage wasn’t an issue?

NoSQL data modeling

Autumn 2020

*Source: The first Winchester: IBM 3340 Storage System, 1973, up to 70MB

Alexandru Burlacu

NoSQL models (recall, there are many of them) are not constrained by storage, because storage is
cheap today, and pretty fast. The gist of NoSQL data modeling is:

Derive the structure of your tables from the usage patterns of your application

That is, for each call to the DB, you need to access just one “table”, no joins.

Most of the time it is possible to support multiple use cases with a single table, by the means of
composite keys, aggregates, and lack of schema, therefore supporting multiple types of key value
pairs in a single table. Check the links below for more info.

NoSQL data modeling

Autumn 2020

For more info: https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
 https://www.youtube.com/watch?v=HaEPXoXVf2k

https://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
https://www.youtube.com/watch?v=HaEPXoXVf2k

Alexandru Burlacu

DBs, be they relational or not, are a priori systems that allow concurrent access. Otherwise, they
wouldn’t make much sense. But there are different ways to allow safe concurrent access to a DB.

Before we look into how concurrency is handled in DBs, we need to recall the readers-writers
problem.

DBs: concurrency

Autumn 2020

Alexandru Burlacu

Beside readers-writers problem, throughout history it turned out that it’s not so trivial to ensure
that transactions do not interfere with one another. Different read and write anomalies were
discovered, and to keep DBs safe from them, different transaction isolation levels were proposed.
Read anomalies are:

- Dirty read: another transaction may change the value that the first transaction is reading
- Non-repeatable read and Read skew: same, but that other transaction has commited
- Phantom read: same as above, but the other transaction changes a value that is the subset

of read data.
Write anomalies are:

- Lost updates: a transaction reads a value, another one writes to it, and the first one writes
based on the initial value

- Write skew: Two concurrent transactions each determine what they are writing based on
reading a data set which overlaps what the other is writing.

DBs: concurrency

Autumn 2020

Alexandru Burlacu

DBs are very much like the setup of RW-problem. We have sessions that want to read, and ones
that want to write. For this matter, DBs usually have two kinds of locks, so called shared or read
lock, or exclusive or write lock.

Now that we have locks, how do we ensure data is only written correctly?

We must use either pessimistic or optimistic locking.

DBs: concurrency

Autumn 2020

Alexandru Burlacu

So, let’s first dissect the pessimistic locking approach. Basically, apply read/write locks.

To ensure maximum isolation and therefor get rid of most read and write anomalies, we can use
two phase locking (2PL). How does it work?

1. We only acquire locks and don’t release any
2. We release locks and don’t acquire any

DBs: concurrency

Autumn 2020

Alexandru Burlacu

In practice? The following sequence uses 2PL:

ReadLock(R1), ReadLock(R2), WriteLock(R3),
<perform your actions here>,
WriteUnlock(R3), ReadUnlock(R2), ReadUnlock(R1).

This sequence of actions guarantees that no read anomaly will happen, and neither will Lost
Updates and Write Skews.

The problem? It’s very slow.

DBs: concurrency

Autumn 2020

For more info: https://begriffs.com/posts/2017-08-01-practical-guide-sql-isolation.html
 https://yizhang82.dev/db-isolation-level

https://begriffs.com/posts/2017-08-01-practical-guide-sql-isolation.html
https://yizhang82.dev/db-isolation-level

Alexandru Burlacu

Another way to perform concurrency control was inspired by the Universal Scalability Law (recall
it?) and does not use locking at all or sparingly. Enter optimistic locking or optimistic concurrency
control.

Let’s run through an example of optimistic locking:
- We want to read R1 and R2, and write into R3
- We make a copy of them all (a snapshot), compute R3
- We check whenever values we wanted to read and write didn’t change
- If they didn’t, we commit our new changes
- If they did, we abort the transaction and might try again

This method works very well when there are many more reads than writes, or the write contention
is small. The downside, we may have some anomalies, usually Write Skews.

DBs: concurrency

Autumn 2020

Alexandru Burlacu

Always pick your transaction isolation level depending on your use cases.
Most of them don’t need serialization.

The less isolate the transaction, the more performant your DB will be, in terms of write throughput
and latency.

DBs: concurrency

Autumn 2020

Alexandru Burlacu

RSocket, Thrift, Connection Multiplexing, Hypertext Application Language
Event Sourcing (DDD), Anti-corruption layer, CQRS
Semantic Web, RDF, Consistent hashing, Hi/Lo algorithm

Keywords (Good to know)

Autumn 2020

Alexandru Burlacu

When it comes to use cases, two major ones emerge, transactional (OLTP) and analytical (OLAP).
OLTP, or online transactional processing, is the scenario that you’re most acquainted with, that is,
having an operation database where your application writes/reads data to satisfy user necessities
defined by the functions of the system/service.

OLAP, or online analytical processing, is a different beast. OLAP systems usually store historical
data and use it to answer ad-hoc queries from analysts and business. OLAP systems also keep
the data in a denormalized form, for easier querying and reporting.

Most databases, either SQL or NoSQL are primarily focused on OLTP scenarios, but SQL-capable
systems (not-necessary relational databases) are a better fit for OLAP scenarios.

DBs: use cases

Autumn 2020

Alexandru Burlacu

OLAP systems pretty much break all the rules that you know about the design of a database.

Usually when we’re talking about an analytics database we are talking about a data warehouse.
Data warehouses (DWH) are systems of denormalized databases that hold historical data in a
relational database. DWH use special schemas, most commonly star and snowflake.

A star schema is used to model business processes as fact and dimension tables. Example:

fact_sales(store_id, product_id, date_id, units_sold)
 | | |_ dim_date(id, day_of_week, is_holiday, day, month, year)
 | |_ dim_product(id, name, brand, sku, price)
 |_ dim_store(id, country, city, address)

DBs: OLAP systems

Autumn 2020

Alexandru Burlacu

Fact tables represent business processes, like sales, flights, bids, while dimension tables contain
information about some specific aspect of the fact table, like time, people, products, places and
so on.

Dimensions can have other dimensions, then we have a snowflake schema.

If we have multiple related business processes, like flights, hotel registrations and car rentals, we
can say then that we have a fact table constellation.

For a definitive guide, check R. Kimball, M. Ross, The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling

DBs: OLAP systems

Autumn 2020

Alexandru Burlacu

DWHs, like the
snowflake schema with
fact table constellation,
usually are not
populated right away
with information from the
operational database of
the application, but
through some periodic
batch job.

Still, there are examples
of Real-Time systems.

DBs: OLAP systems

Autumn 2020

Alexandru Burlacu

DWHs are quite inflexible, and in the world of Big Data, where data is varied and fast moving,
arranging it into a relational database schema can prove to be difficult. That’s where Data Lakes
come in.

A data lake is a storage and analytics system that’s primary purpose is to ingest big volumes of
both un/semi-structured data, like logs, sensor readings, json/xml documents, and allow for ETL
and analytics use cases on it.

DBs: OLAP systems

Autumn 2020

Alexandru Burlacu

Data Lakes are huge
structures, often
criticised, still useful.

Storage requirements
are usually satisfied with
distributed filesystems
like Hadoop FS (HDFS)
or more recently tools
like Amazon’s AWS S3.

Autumn 2020

DBs: OLAP systems

Alexandru Burlacu

HDFS was inspired
by Google File
System, which was
primarily designed to
be able to reliably
keep TBs (even PBs)
of data in a
distributed manner
on commodity
hardware that can
fail frequently.

Distributed filesystems: Hadoop filesystem (HDFS)

Autumn 2020

Alexandru Burlacu

HDFS uses many
neat tricks to ensure
maximum
fault-tolerance. For
example rack
awareness, which
allows for data
replicas to be kept
on different physical
servers.

Distributed filesystems: Hadoop filesystem (HDFS)

Autumn 2020

Alexandru Burlacu

A common issue of
HDFS was the risk
of the NameNode
failure and its dire
consequences.

As a result, using
active-passive
failover with tools
like Zookeeper to
keep masters in
sync were used to
achieve HA.

Distributed filesystems: Hadoop filesystem (HDFS)

Autumn 2020

Alexandru Burlacu

MapReduce, a very widely used term at the dawn of Big Data, is a framework and distributed
computing paradigm that fit very nicely with HDFS.

MapReduce consists of 3 phases: mapping, shuffling and reducing.

In order to understand MapReduce (MR), you need to understand its main assumptions. MR’s
primary assumption is that while working with huge datasets (TBs, or PBs) it is foolish to move
data to the processing nodes, and therefore the decision was made to move data the least, and
instead pass functions/operations to the DataNodes.

Also, given the shaky hardware used by HDFS, MapReduce opts for frequent disk writes of
intermediary states of processing, thus ensuring that computations can be more-or-less resumed
in case of a node failure.

Hadoop and MapReduce

Autumn 2020

Alexandru Burlacu

MapReduce consists of 3 stages:
- Mapping - application of a function/operation to some data
- Shuffling - assembling data and sending via network it to the Reducer nodes for aggregation
- Reducing - grouping data and aggregating it

There are many ways how to tune this process for a given problem, but this is out of scope for this
course.

MR only allows DAGs, with no loops, so in order to support iterative computations (ML) it does
multiple passes over the data.

Hadoop and MapReduce

Autumn 2020

For more info on MR patterns and algs: https://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/

https://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/

Alexandru Burlacu

Another, simpler, example
of MapReduce is word
count.

Texts |> split()
|> map(x -> (x, 1), words)
=via net=> |>
groupBy(word) |> sum

Hadoop and MapReduce

Autumn 2020

Alexandru Burlacu

Remember that hadoop/MR is used to process big amounts of data, also it sometimes it can
generate reports based on the processing done. But reports means joins. Remember what a join
is is, from your DB course?

First let’s talk about classic join algorithms before diving into their distributed counterparts. There
are 3 of them (most notable):

- Nested loop join
- Hash join
- Sort-merge join

Where’s Hadoop, there are joins...

Autumn 2020

Alexandru Burlacu

Nested loop join is fairly simple, and frankly not so efficient, but useful in scenarios where the final
result set is not that big, in the order of thousands of elements.

for tuple r in RelationR:
 for tuple s in RelationS:
 if r and s satisfy the join condition:
 yield tuple <r,s>

As an optimization, making the algorithm aware of the block sizes for each table will increase the
processing speed by optimizing for CPU cache.

Where’s Hadoop, there are joins...

Autumn 2020

Alexandru Burlacu

Next on the list is the hash join, which is considered the least efficient, but useful when only a
subset of join keys exist on both (big) tables, thus optimizing for memory use.

multimap: Map<Key, List<Values>>
for tuple r in RelationR:

 multimap[r[key1]].append(r)

for tuple s in RelationS:

 for tuple r in multimap[s[key2]]:
 yield tuple <s, r>

Where’s Hadoop, there are joins...

Autumn 2020

For implementations of hash join in different langs see: https://rosettacode.org/wiki/Hash_join

https://rosettacode.org/wiki/Hash_join

Alexandru Burlacu

Finally, the most efficient join algorithm of all 3, sort-merge join. Still, it shouldn’t be thought of as
panacea, it is not the best solution when TK

Sort-merge join may be expensive if the data is not ordered in the tables, and as a corollary, it can
be very fast if it is stored already sorted.

Assuming the tables are already sorted based on their join keys, we check whenever the current
key in one list equals the current key in the other list. If yes, we compute the cartesian product. If
one key is greater than the other, we advance the other list and either drop or pad with null the
tuple from the first list.

Where’s Hadoop, there are joins...

Autumn 2020

Alexandru Burlacu

And now for the distributed joins. Hadoop usually has 2 types of joins + variations.
- Reduce-side joins, which are similar to sort-merge joins, and useful for big data volumes.
- Map-side joins, which are similar to hash joins and preferable when one of the tables is small

enough to be placed on all used mapper nodes.

A hybrid approach is to do map-side filtering of data, and send it to reduce-nodes for joining, this
way reducing the bandwidth requirements.

Where’s Hadoop, there are joins...

Autumn 2020

For pseudocode for both types of joins see: https://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/

https://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/

Alexandru Burlacu

… pick Apache Spark. Apache Spark is a big data processing framework, considerably more
efficient than Hadoop/MR, but needs more expensive hardware to shine. It comes with tools for
ML, graph analytics, SQL-on-hadoop, and streaming analytics support.

So, how does it compare with Hadoop, concept-wise?
First of all, Apache Spark is using in-memory computing, diluting a bit the assumption that the
nodes are unreliable. In other words, whenever Hadoop writes intermediary results to disk, Spark
just keeps them, that is persists, in memory.

If Hadoop is too slow for you...

Autumn 2020

Alexandru Burlacu

As a side effect of the Spark behavior, it is possible to reuse intermediary results fairly quickly,
allowing for efficient ML and graph processing on multi-node clusters.

The core abstraction of Apache Spark is an RDD - resilient distributed dataset.

RDDs are immutable partitions of a dataset placed in a Spark cluster and accessible via a
high-level API. Note that RDDs are kept by default in memory and are not replicated. So how
does it stays fault-tolerant and “resilient”?

If Hadoop is too slow for you - Apache Spark is the way

Autumn 2020

Alexandru Burlacu

In case that a partition is corrupted, or simply the underlying server has crashed, Spark finds out
and recreates/reconstructs that partition. But how??

I just said that RDDs are also immutable. In order to be able to recreate the RDD partition, a
transformation lineage is kept in memory too. Apache Spark is lazy evaluated, and every
transformation applied actually just adds to the DAG. Only when one asks for results it will execute
the DAG. This very DAG is used to deduce the lineage.

If Hadoop is too slow for you - Apache Spark is the way

Autumn 2020

Alexandru Burlacu

After defining our tools and being able to
process TBs, of data in an interactive
fashion, we are still thirsty for quicker
insights. In-memory analytics on historic
data just doesn’t cut it.

Enter real-time analytics. And we will
focus only on Lambda and subsequently
Kappa architectures. By no means this is
a complete discussion on the topic of
real-time analytics and streaming data
processing.

Putting it all together

Autumn 2020

Alexandru Burlacu

First Lambda Architecture.
Made up of 4 main layers:
Ingestion, Batch, Speed and
Serving, it combines real-time,
simple and sometimes even with
a bit of error analytics, and slow
but accurate analytics on
historical data, in a single
architecture.

Putting it all together

Autumn 2020

*Source: http://lambda-architecture.net/

http://lambda-architecture.net/

Alexandru Burlacu

Serving layer is usually a storage
that keeps the results of either, or
both, of the previous layers and
allows for ad-hoc queries and
subsequently APIs, Dashboards
or spreadsheet tools, to name a
few.

Putting it all together

Autumn 2020

*Source: http://lambda-architecture.net/
Also check: https://www.jamesserra.com/archive/2016/08/what-is-the-lambda-architecture/

http://lambda-architecture.net/
https://www.jamesserra.com/archive/2016/08/what-is-the-lambda-architecture/

Alexandru Burlacu

There’s an issue with the Lambda architecture. It has a lot of redundancy. Both speed and batch
layers in principle do the same thing, with minor differences, and when requirements change, we
need to update both codebases.

This is how we arrive at Kappa architecture, which basically tells us that everything is a stream*.

Kappa architecture ditches the batch layer and instead uses windowing, aggregates and rollup
strategies to obtain that historical data from an event stream.

Among the driving forces of Kappa architecture adoption is Apache Kafka, because of its
distributed, event-first and persistent nature.

Autumn 2020

Putting it all together

*Check out: https://www.youtube.com/watch?v=fU9hR3kiOK0
and https://jonboulineau.me/blog/architecture/kappa-architecture

https://www.youtube.com/watch?v=fU9hR3kiOK0
https://jonboulineau.me/blog/architecture/kappa-architecture

Act 2: The (really) hard things

Alexandru Burlacu Autumn 2020

Alexandru Burlacu Autumn 2020*Painting: Christ in Limbo, a follower of Hieronymous Bosch

No clock
synchronization

No shared
memory

Communication
is not reliable

Components fail
independently

Malicious
agents

Alexandru Burlacu

Let’s now touch some more fundamental issues.

1. Geographic service distribution
2. Fraud detection systems
3. Tracing/debugging microservices
4. Recovering after some system-wide crash

What do these have in common?

Time. And all the torments that come with it.*

Autumn 2020

*Check out: https://www.youtube.com/watch?v=-5wpm-gesOY

https://www.youtube.com/watch?v=-5wpm-gesOY

Alexandru Burlacu

Imagine a system distributed across the globe, a service like a bank or video streaming. How do
you order events like error logs, financial transactions or similar?

Using local time is a very bad idea, I sure hope I don’t need to tell you this. Neither is UNIX
timestamp a good alternative. So what should you do?

Well, it’s complicated. Ofc it is.

But let’s first deal with the data-time format. Usually, UTC (Coordinated Universal Time) is
recommended, but even this is sometimes a bad choice. Depending on what you want to achieve
in your system, UTC might have some issues for you, for example the fact that it doesn’t
correspond to the astronomic time. Or that 23:59:60 is a valid UTC time.

Time in distributed systems

Autumn 2020

Alexandru Burlacu

If your systems are sensitive to the time, you might want to use NTP (Network Time Protocol) to
synchronize it between your sites, but even it has some issues.

If you are running very time-sensitive services or experiments, PTP (Precision Time Protocol)
might be a solution for you.

Sometimes to cope with the time-issues, interval timestamps, rather than point timestamps, can
be used, but even these are not perfect.

So, what if you don’t really care for the real/actual time, but only need a way to order events?
Enter logical clocks.

Time in distributed systems

Autumn 2020

*Check out: https://people.cs.aau.dk/~bnielsen/DS-E08/material/clock.pdf

https://people.cs.aau.dk/~bnielsen/DS-E08/material/clock.pdf

Alexandru Burlacu

For many systems we don’t care as much about the actual time when events occurred, but rather
only which events preceded which, in other words their causal order.

Recall the term partial order.

Logical clocks are all about that. First proposed by Leslie Lamport, the so-called Lamport
timestamps are a way to partially order events in a distributed system, using a fairly simple
algorithm.

Time in distributed systems

Autumn 2020

Alexandru Burlacu

The algorithm looks like this:
P1: # <event is known to be happen now>
P1: time += 1 // A process increments its counter before each event in that process
P1: # <event happens>
P1: send(message, time) // When a process sends a message, it includes its counter value with
the message

P2: message, time_stamp = receive()
P2: time = max(time_stamp, time) + 1 // On receiving a message, the counter of the recipient
is updated, if necessary, to the greater of its current counter and the timestamp in the received
message. The counter is then incremented by 1 before the message is considered received.

Time in distributed systems

Autumn 2020

Alexandru Burlacu

Given the `->`meaning `happens-before`, he algorithm assumes:

iff EventA -> EventB => LT(EventA) < LT(EventB)

The inverse relation does not hold.
However, such properties as:

- if LT(EventA) < LT(EventB) then either EventA might happened-before EventB or
be concurrent with EventB, but certainly didn’t happen after EventB in any causal way.

- if LT(EventA) !< LT(EventB) then EventA didn’t happen-before EventB

For Lamport timestamps it is possible to obtain total ordering by specifing a conflict resolution
strategy, like wall clock, or process pid.

Time in distributed systems

Autumn 2020

Alexandru Burlacu

Now for more versatile algorithm, vector clocks. A vector clock is an extension of the Lamport
timestamp, basically it’s a vector of these timestamps of the size N, where N is the number of
nodes in a distributed system.

Each process increments only its local clock, but sends the whole vector when interacting with
other processes. Upon receiving, the element-wise max is applied to the vector.

Vector clocks are more useful than Lamport timestamps because:
if EventA -> EventB => VC(EventA) < VC(EventB)
But now the inverse relation does hold.
if VC(EventA) < VC(EventB) => EventA -> EventB

Time in distributed systems

Autumn 2020
*Check out: https://riak.com/why-vector-clocks-are-hard/

https://riak.com/why-vector-clocks-are-hard/

Alexandru Burlacu

Time in distributed systems

Autumn 2020

Alexandru Burlacu Autumn 2020

http://www.youtube.com/watch?v=BRvj8PykSc4

Alexandru Burlacu

When it comes to databases, we talked about isolation. But all of it was only on a single machine.
What if we had a distributed database? Challenges…

The good thing about having only one local database is that it usually is very consistent. If I
commited a transaction, you can see it right after this. Not so much if we have multiple databases
working together.

In principle we could obtain the same behavior, but two things must be taken into account.
- Communication cost/time
- Possible network issues, even partitions

Consistency in distribute system

Autumn 2020

Alexandru Burlacu

Before we dive any deeper, what’s consistency?
When talking about distributed data(bases|stores|w/e) we need to understand that a consistent
system will be the one which will have the same data across all nodes.

Now, depending on the concrete system, we can have this happen either “instantly” or after some
time.

Most of the time, we want our data to be consistent, at least we think so...

Consistency in distribute system

Autumn 2020

Alexandru Burlacu

We want our systems:
- to be as available as possible, that is, when queried, always responding
- to be consistent
- and finally, to resist network failures/partition events, as in nodes are up but can’t

communicate

Only issue, in real world, you can’t have all 3.

Enter CAP theorem.

Consistency in distribute system

Autumn 2020

Alexandru Burlacu

Enter CAP theorem.

Basically it says, out of Consistency,
Availability and Partition Tolerance, pick 2.
Or actually just one, because in a
distributed setting, you can’t do without
Partition Tolerance.

In practice Consistency is a spectrum,
ranging from eventually consistent (EC) to
linearizable, aka atomicly consistent.

Seems a bit incomplete.

Consistency in distribute system

Autumn 2020
Check out: https://mwhittaker.github.io/blog/an_illustrated_proof_of_the_cap_theorem/

https://mwhittaker.github.io/blog/an_illustrated_proof_of_the_cap_theorem/

Alexandru Burlacu

So, in practice, PACELC theorem is a more relevant heuristic. PACELC theorem is an extension to
the CAP theorem.

Basically, in case of network partition (P) in a distributed computer system:
- either availability (A)
- or consistency (C) (as per the CAP theorem)

must be prioritized, but else (E), when the system is running normally, the choice is between
latency (L) and consistency (C).

For example, Cassandra is PA/EL but can tune the consistency levels; both HBase and SQL
databases are PC/EC; Mongo is PA/EC; and there are even systems that allow for very high levels
of consistency while keeping adequate availability metrics.

Consistency in distribute system

Autumn 2020

Alexandru Burlacu

Because of numerous critics regarding CAP theorem and its applicability, here’s a nugget of
wisdom: Choose consistency over availability*, but don’t overdo it.

Another nugget of wisdom, usually you won’t bother about CAP theorem as much. What will you
bother about is the trilemma between (1) access patterns flexibility, (2) latency and (3) throughput
and scalability of the system.*

Consistency in distribute system

Autumn 2020
*Check out: https://www.alexdebrie.com/posts/choosing-a-database-with-pie/

https://www.alexdebrie.com/posts/choosing-a-database-with-pie/

Alexandru Burlacu

Now, a little throwback to NoSQL databases. During their rise, a lot of implementations where
claiming that ACID is usually overkill and that they are BASE (Basically Available, Soft
State/tunable consistency, Eventually Consistent).

Let’s breakdown:
- Basically Available: systems focus on high availability and scalability rather than keeping

state consistent, via distribution and replication
- Soft state: it is programmer’s responsibility to tune the consistency levels of the system
- Eventually consistent: system’s only guarantee about state is that at some point in future it

will converge among all nodes, but no upper bound is given.

Consistency in distribute system

Autumn 2020
*Check out: https://www.lifewire.com/abandoning-acid-in-favor-of-base-1019674

https://www.lifewire.com/abandoning-acid-in-favor-of-base-1019674

Alexandru Burlacu

So, by now we know that SQL databases are consistent, even strongly so, and NoSQL databases
are eventually consistent, which is a very weak guarantee. But is this the end of the story? Could it
only be only 2 choices?

Until now you might have noticed the assertion that consistency is a spectrum.

On the most constraint end there’s strict consistency, which is rather a formalism than an
actually practical consistency level. It assumes impossibility of concurrent writes to the same
variable and require writes to be instantaneous.

A more practical level is linearizability, or atomic consistency. This is the maximum you can get in
a distributed system. The C in CAP theorem. Even some SQL databases don’t provide it.*

Consistency in distribute system

Autumn 2020
*Check out: https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

https://martin.kleppmann.com/2015/05/11/please-stop-calling-databases-cp-or-ap.html

Alexandru Burlacu

A system is linearizable if given that operation X2 started after operation X1 successfully
completed, then operation X2 must see the the system in the same state as it was on completion
of operation X1, or a newer state. Quite a strong guarantee.

Between linearizable and eventually consistent systems there are also causally consistent ones.
More recently, some databases, like Mongo, started providing it.

But even this isn’t the end of the story. To ensure causal consistency, systems must have the
following special consistency levels: Read-your-writes, Consistent-prefix, Session consistency,
those in turn extending Monotonic reads and writes. Different distributed databases have different
names and forms of causal consistency.

Consistency in distribute system

Autumn 2020
Check out: https://mwhittaker.github.io/consistency_in_distributed_systems/1_baseball.html

https://mwhittaker.github.io/consistency_in_distributed_systems/1_baseball.html

Alexandru Burlacu

Finally, let’s discuss the weakest of them all, eventual consistency. Eventual consistency is first
of all a liveness guarantee, and does not include safety. In human tongue, eventual consistency
guarantees the system is always running, but not that data is correct.

EC systems can guarantee that if no new writes arrive, the data will converge at some point in the
future. To ensure convergence, EC needs a way to deal with inconsistent data, either through
conflict resolution (reconciliation) or some anti-entropy methods, like an async job that is updating
database replicas.
Some of these methods include:

- Riak’s vector clocks for reconciliation
- Using the last-write-wins for reconciliation
- Cassandra’s jobs that synchronize the replicas in a cluster

Consistency in distribute system

Autumn 2020

Alexandru Burlacu Autumn 2020*Painting: The Map of Hell, Abyss of Hell by Sandro Botticelli

Networks in distributed computing

Alexandru Burlacu

Is it possible to ensure that every message sent through the network will always be received, and
acknowledged only once?

In other words, is it possible to have exactly once delivery?

Treacherous networks and delivery guarantees

Autumn 2020

Alexandru Burlacu

Is it possible to ensure that every message sent through the network will always be received, and
acknowledged only once?

In other words, is it possible to have exactly once delivery?

Nope* but we can try hard and almost always do good.

Treacherous networks and delivery guarantees

Autumn 2020
*Check out: https://bravenewgeek.com/you-cannot-have-exactly-once-delivery/

https://bravenewgeek.com/you-cannot-have-exactly-once-delivery/

Alexandru Burlacu

Why exactly once delivery isn’t possible?

For this, I must tell you The Two Generals
Problem.

If sending an ack for the message, how can we
ensure it was received and not captured?
Another ack?

Using acks is not feasible, because they too are
messages and therefore can be lost.

Using timeouts is not good either, why?

Treacherous networks and delivery guarantees

Autumn 2020

Alexandru Burlacu

Whenever we’re sending packets, messages or streams of data via some network, one important
implication of the fallibility of our networks is will my data be received?

Depending on the answer you want to this question, there are 3 primary delivery guarantees.
- At most once: fire and forget, no delivery guarantee
- At least once: delivery guaranteed, but might result in duplication
- Exactly once: data is sent, and if delivered, delivery is acknowledged, and if not, data is

retransmitted without duplication.

See, the part without duplication is the tricky one.

Treacherous networks and delivery guarantees

Autumn 2020

Alexandru Burlacu

Exactly once delivery guarantee can’t happen, but exactly once semantic is possible. It actually is
correct to call it essentially once.

To ensure essentially once delivery, either message deduplication, idempotent processing, or
distributed snapshoting must be used.

Still, beware, it is programmer’s responsibility to limit the side effects of message processing,
otherwise situations like multiple unwanted database writes, or counter increments are possible.

Treacherous networks and delivery guarantees

Autumn 2020
*Check out: https://www.splunk.com/en_us/blog/it/exactly-once-is-not-exactly-the-same.html

https://www.splunk.com/en_us/blog/it/exactly-once-is-not-exactly-the-same.html

Alexandru Burlacu

Recall what a transaction is.

Local transactions are fairly hard to get right, eliminating any read or write anomalies.
But compared to distributed transactions, it’s a piece of cake ©.

We have a number of ways to achieve transactions in a distributed systems scenarios, namely:
- 2 Phase Commits (not to be confused with 2 Phase Locking) for quick operations and low

throughput requirements,
- usage of distributed locks or leases that in a way are similar to 2 Phase Commit systems,

and finally...
- … Compensating Transactions aka Sagas for long running processes, with relaxed

consistency and high throughput requirements.

Transactions in distributed systems

Autumn 2020

Alexandru Burlacu

Let’s start with distributed locking, the most intuitive one of the three. Just like with classic
locking, we can do it both in an optimistic and a pessimistic manner. For optimistic concurrency
control in such scenarios ETags are a good proxy to understand the mechanics.

Let’s discuss the pessimistic variant.

Imagine, metaphorically, that each service is a “thread” and wants to acquire a “lock” on some
resource, possibly part of another service. This metaphoric lock will be a dedicated service,
usually named “Lock Manager”.

But what will happen if the server that acquired a lock, dies? Or the network between the 2 is
congested?

Transactions in distributed systems

Autumn 2020
*Check out: https://dzone.com/articles/everything-i-know-about-distributed-locks

https://dzone.com/articles/everything-i-know-about-distributed-locks

Alexandru Burlacu

The answer to this question is to have some kind of lease, rather than a lock. That is, a mechanism
that bounds the duration a server can keep the lock.

But there are issues with this approach too. What if the node doesn’t know whenever or not its
lease has expired?

In principle some sort of heartbeat can be used to keep the locking manager and node with the
lease in sync. But of course there are some issues in here too.

Another approach is to use version, or fencing tokens, in a way mimicking optimistic concurrency
control schemes.
Popular tools to implement Distributed Locks in a correct way are ZooKeeper, Hazelcast and etcd.

Transactions in distributed systems

Autumn 2020

*Check out: https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html

https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html

Alexandru Burlacu

Another way to do distributed transactions is
using a so-called 2 Phase Commit (2PC).

2PC is a scheme of how multiple nodes can
agree upon doing a transaction. It works in 2
phases, first the transaction manager node asks
the other nodes whenever or not they are ready
to do a transaction, and the second phase is
actually making the transaction and ensuring
that all nodes committed, or aborted,
successfully.

Transactions in distributed systems

Autumn 2020
*Check out: https://courses.cs.washington.edu/courses/cse452/20sp/slides/2pc.pdf

https://courses.cs.washington.edu/courses/cse452/20sp/slides/2pc.pdf

Alexandru Burlacu

2PC is a blocking protocol, as such it isn’t suitable for long running transactions. Sagas to the
rescue.

A saga, or a long-running process, is a pattern of local transactions that have compensating
transactions, in case of failures.

How does it work?
There are 2 primary types

- Orchestrated, via a transaction manager
- and Choreographed, that is nodes communicate between themselves whenever a failure has

occurred.

Transactions in distributed systems

Autumn 2020
*Check out: https://stackoverflow.com/questions/48906817/2pc-vs-sagas-distributed-transactions

https://stackoverflow.com/questions/48906817/2pc-vs-sagas-distributed-transactions

Alexandru Burlacu

Sagas of course have drawbacks,
primarily that in order to solve read and
write anomalies it is programmer’s
responsibility to design the system in
such a way that either the system can
tolerate some level of inconsistency, or
that the consistency is enforced at
application level.

Still, they achieve higher throughput and
are more flexible.

Transactions in distributed systems

Autumn 2020
*Check out: https://blog.couchbase.com/saga-pattern-implement-business-transactions-using-microservices-part/
and https://blog.couchbase.com/saga-pattern-implement-business-transactions-using-microservices-part-2/

https://blog.couchbase.com/saga-pattern-implement-business-transactions-using-microservices-part/
https://blog.couchbase.com/saga-pattern-implement-business-transactions-using-microservices-part-2/

Alexandru Burlacu

Systems like transactions are a special case of so called atomic broadcast protocols, i.e. we
either notify everyone once, or we don’t notify at all. Another class of cases requiring strong
consistency guarantees are consensus protocols.

A consensus is a decision with which everyone agrees with. Think of unanimous voting.
Consensus is a necessary condition for many critical components of distributed fault tolerant
systems, like configuration management, service discovery, distributed locks, and leader election
problems.

So how to achieve consensus?

Consensus

Autumn 2020

Alexandru Burlacu

First, the easy-ish part: tools that provide operations with consensus.

Projects like ZooKeeper for the big data ecosystem, etcd for Kubernetes and cloud tools, and also
Consul from Hashicorp, all provide tooling based on consensus ideas. Primarily having a key-value
or filesystem-like API, these can be used to implement a lot of higher-level distributed and
fault-tolerant constructs, like locks, service discovery and other tools.

ZooKeeper uses an algorithm used ZAB* (ZooKeeper atomic broadcast), while etcd and Consul
use Raft. Both are based upon the legendary Paxos protocol.

Consensus

Autumn 2020
*Check out: https://distributedalgorithm.wordpress.com/2015/06/20/architecture-of-zab-zookeeper-atomic-broadcast-protocol

https://distributedalgorithm.wordpress.com/2015/06/20/architecture-of-zab-zookeeper-atomic-broadcast-protocol/

Alexandru Burlacu

Enter the FLP impossibility theorem* - a theoretic and important work, the gist of which is: you
can’t guarantee, for all scenarios, consensus if the nodes communicate in an asynchronous
fashion over a faulty medium.

Consensus must have a number of guarantees, namely:
- Termination (a consensus will be reached)
- Agreement/Consistency (all decide on a single value)
- Validity/Integrity (only proposed solutions can be accepted)

Termination is a liveness guarantee, while the other two are a safety guarantee, that is, a guarantee
that the algorithm will work correctly.

Consensus: it’s impossible

Autumn 2020
*Check out: https://www.the-paper-trail.org/post/2008-08-13-a-brief-tour-of-flp-impossibility/

https://www.the-paper-trail.org/post/2008-08-13-a-brief-tour-of-flp-impossibility/

Alexandru Burlacu

Now, enter Paxos protocol. It relaxes the requirement for both safeness and liveness, keeping only
the safety guarantee. It was initially proposed by Leslie Lamport and the core idea was to provide
a guaranteed consensus protocol, that could be used in practice, and that would overcome the
FLP impossibility theorem.

Paxos treats the consensus as an state-machine replication problem, and runs in three stages,
preparation, proposal, and agreement.

Paxos can tolerate n failures if 2n+1 machines are used in a cluster. So, in a way, it guarantees
liveness for less than n failures. In practice, Paxos, and Paxos-like algorithms are reserved for
special cases, because of its slow nature. 3 to 7 node clusters are most popular. More than that is
too slow.

Consensus: Paxos protocol

Autumn 2020

*Check out: https://www.cs.princeton.edu/courses/archive/spr11/cos461/docs/lec24-strong.pdf
 https://www2.cs.duke.edu/courses/fall07/cps212/consensus.pdf

https://www.cs.princeton.edu/courses/archive/spr11/cos461/docs/lec24-strong.pdf
https://www2.cs.duke.edu/courses/fall07/cps212/consensus.pdf

Alexandru Burlacu

A protocol similar to Paxos protocol, but easier to grasp, is Raft*.

Paxos is considered to take the optimal number of steps before reaching an agreement, whereas
Raft is a bit more sloppy about it, but on the flipside it is considerably easier to implement.

Also, Raft models a Log Replication scenario (see the link to understand what it means). For Paxos
to be equivalent with Raft we need to run a so-called Multi-Paxos, that is Paxos for multiple
values.

Consensus: Raft protocol

Autumn 2020
*Check out: http://thesecretlivesofdata.com/raft/

http://thesecretlivesofdata.com/raft/

Alexandru Burlacu

Sometimes we need to work in fairly large (1k-10k+), dynamic groups, that is, groups that have
entities entering and leaving the group. How do we find these members? Or propagate some
information to them? Enter Gossip or Epidemic protocols.

These protocols are a subclass of group membership protocols and are used primarily in P2P
networks, like CDNs, BitTorrent networks, and notably in Cassandra clusters for updating state.

The idea is to have nodes know only a subset of the whole group, and randomly push to/pull from
them updates. It is provable that such an approach will disseminate the information in
ceil(logK(N)) steps at most. Not strongly consistent, but still some guarantees.

When consistency can be delayed

Autumn 2020
*Check out: https://asafdav2.github.io/2017/swim-protocol/ and https://www.serf.io/docs/internals/simulator.html

https://asafdav2.github.io/2017/swim-protocol/
https://www.serf.io/docs/internals/simulator.html

Alexandru Burlacu

Think this is hard? What if there are more
agents/generals, some of which are malicious.

Enter Byzantine Generals Problem, or How to ensure
consensus with malicious agents?

Just like simple consensus, Byzantine-fault tolerant
systems can’t be implemented over asynchroneous
channels.

If the channel is synchronous, the cluster requires 3n+1
nodes for n faulty nodes to work properly.

Treacherous agents and consensus

Autumn 2020
*Check out: https://www.cs.cornell.edu/courses/cs6410/2018fa/slides/18-distributed-systems-byzantine-agreement.pdf

https://www.cs.cornell.edu/courses/cs6410/2018fa/slides/18-distributed-systems-byzantine-agreement.pdf

Alexandru Burlacu

Byzantine fault tolerance is an important computer
science topic, with applications in blockchain
technology, for example, or mission critical real-time
software, were we need to account for occasional faults
in sensor readings.

Although a very hard problem, some special solutions
do exist, mainly by simulating synchronousness of
communication or assuming a not-very-strategic
adversary.

Treacherous agents and consensus

Autumn 2020
*Check out: “Practical Byzantine Fault Tolerance” by Barbara Liskov

Alexandru Burlacu

Edge computing
OLAP Cube, Rollup table, Materialized View
CRDT (Conflict-free Replicated Data Types), Interval Tree Clocks
Chord Protocol, Bloom Filter

Keywords (Good to know)

Autumn 2020

Alexandru Burlacu

● https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
● https://martinfowler.com/articles/patterns-of-distributed-systems/index.html
● https://lethain.com/introduction-to-architecting-systems-for-scale/
● https://www.somethingsimilar.com/2013/01/14/notes-on-distributed-systems-for-young-blo

ods/
● “Enterprise Integration Patterns” - Gregor Hohpe and Bobby Woolf

https://www.enterpriseintegrationpatterns.com/docs/EDA.pdf

Reading list

Autumn 2020

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://martinfowler.com/articles/patterns-of-distributed-systems/index.html
https://lethain.com/introduction-to-architecting-systems-for-scale/
https://www.somethingsimilar.com/2013/01/14/notes-on-distributed-systems-for-young-bloods/
https://www.somethingsimilar.com/2013/01/14/notes-on-distributed-systems-for-young-bloods/
https://www.enterpriseintegrationpatterns.com/docs/EDA.pdf

TK TK TK
Streaming Algorithms 101

Alexandru Burlacu Autumn 2020

Alexandru Burlacu

http://web.stanford.edu/class/cs368/
http://people.cs.georgetown.edu/jthaler/COSC548.html
https://mapr.com/blog/some-important-streaming-algorithms-you-should-know-about/
https://people.csail.mit.edu/indyk/Rice/lec1.pdf
https://people.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss14/gitcs/notes3.pdf
http://tutorials.jenkov.com/data-streaming/index.html

TK Streaming Algorithms?

Autumn 2020

http://web.stanford.edu/class/cs368/
http://people.cs.georgetown.edu/jthaler/COSC548.html
https://mapr.com/blog/some-important-streaming-algorithms-you-should-know-about/
https://people.csail.mit.edu/indyk/Rice/lec1.pdf
https://people.cs.umass.edu/~mcgregor/slides/10-jhu1.pdf
https://resources.mpi-inf.mpg.de/departments/d1/teaching/ss14/gitcs/notes3.pdf
http://tutorials.jenkov.com/data-streaming/index.html

