
Network Programming

Alexandru Burlacu Autumn 2020

Intro & Course Description

Alexandru Burlacu Autumn 2020

Alexandru Burlacu Autumn 2020

Concurrency
primitives +
protocols

Concurrency w/
messages +
streaming

Distributed
systems and their
perils

PR PTR PAD

Alexandru Burlacu Autumn 2020

● Topics - first Concurrency, and then Protocols, also a bit about networks and Git

● Labs - 2x, same as the main topics

● Midterms - two midterms, a lab (70%) + questions (3 Qs = 5 + 15 + 10)

● Exam - oral, 30 min preparation time, <16 min Q&A Unless faculty decides otherwise

● Grading policy - 10 is thresholded at 91 points, the rest are relative, following Gaussian dist.

● Attendance - Doesn’t matter. Just pass the exam and complete the labs on time

Alexandru Burlacu Autumn 2020

A. Git
B. Computer Networks
C. Communication
D. Concurrency

1. Definition of concurrency
2. Common problems
3. Synchronization mechanisms
4. Implementation variants
5. Concurrent Collections

 E. Protocols

1. Definition of protocols
2. BSD Sockets API
3. TCP/UDP standards, and others
4. HTTP protocol
5. WebSockets and others
6. A bit about mail protocols (SMTP

and POP3)
7. Error detecting and correcting

codes

So, let’s talk Git

Alexandru Burlacu Autumn 2020

What is Git?

Alexandru Burlacu Autumn 2020

Alexandru Burlacu Autumn 2020

Quick Check 1

Merge vs Rebase?
*Img. Source: https://www.atlassian.com/git/tutorials/merging-vs-rebasing

Alexandru Burlacu Autumn 2020

Quick Check 2

Go back to previous state?
*Img. Source: https://www.atlassian.com/git/tutorials/resetting-checking-out-and-reverting

Alexandru Burlacu Autumn 2020

Quick Check 3, 4, 5

- How’s SVN different from Git?
- Git stash anyone?

- Git Flow? Forking workflow?

Alexandru Burlacu Autumn 2020

Must know on Git internals

Git is indeed an interesting VCS. It’s author claims that he was heavily inspired by file systems
rather than other VCS, that’s why Git is so different.

Git stores snapshots of the working directory. This allows fast checkout between commits and
branches. But this consumes a lot of memory.

That’s why sometimes when git does garbage collection, or is forced to (git gc) it will compress
a number of snapshots into packfiles, that are basically binaries with deltas between objects.

Now, you really should check the Git book: https://git-scm.com/book/en/v2, especially 10th
chapter.

https://git-scm.com/book/en/v2

Alexandru Burlacu Autumn 2020

Must know on Git internals #2

For more info with nice visualizations, check: marklodato.github.io/visual-git-guide/index-en.html

https://marklodato.github.io/visual-git-guide/index-en.html

Alexandru Burlacu Autumn 2020

Some very cool things Git does

- (git cherry-pick) What if you solved a bug in a branch, and want to propagate the
change to everyone else? Doing a full fledged merge could cause anything from a lot of
downtime solving merge conflicts and messy commit history, to even losing credibility and
respect at your workplace. Don’t worry, git cherry-pick got you covered! Now you can
pick a single commit and propagate your bugfix or whatever.

- (git bisect) So, you’ve done some commits and it turns out you accidentally introduced
a bug. But where is it? And when did it happen? git bisect will help, doing binary search
on a range of commits in a convenient way. Reduce your search space dramatically - today!

- (git daemon) You’ve heard about Git being decentralized, but never understood what’s
that? You’re working with a buddy on a feature so pre-alpha that pushing it to central repo
seems unnecessary? Try now git daemon - the static site of git servers!

Alexandru Burlacu Autumn 2020

● http://tom.preston-werner.com/2009/05/19/the-git-parable.html
● https://nvie.com/posts/a-successful-git-branching-model/
● https://www.endoflineblog.com/gitflow-considered-harmful
● https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow
● https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
● [For fanatics and no-lifers] Merkle Tree.

https://www.codeproject.com/Articles/1176140/Understanding-Merkle-Trees-Why-use-them
-who-uses-t

Reading list

http://tom.preston-werner.com/2009/05/19/the-git-parable.html
https://nvie.com/posts/a-successful-git-branching-model/
https://www.endoflineblog.com/gitflow-considered-harmful
https://www.endoflineblog.com/oneflow-a-git-branching-model-and-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow
https://www.codeproject.com/Articles/1176140/Understanding-Merkle-Trees-Why-use-them-who-uses-t
https://www.codeproject.com/Articles/1176140/Understanding-Merkle-Trees-Why-use-them-who-uses-t

Computer networks

Alexandru Burlacu Autumn 2020

Alexandru Burlacu Autumn 2020

How it all began...

“There was an idea
To bring together
A group of remarkable machines
So when we need them
They could compute the stuff
That we never could
… and also survive a couple of
nukes” - Nick Fury

Alexandru Burlacu Autumn 2020

Ok, now seriously

Among the first computer networks where established by U.S. military in late 50s, notoriously
SAGE aka Semi-automatic Ground Environment.
Another important milestone was SABRE, a commercial airline booking system, made in 1960,
which was two mainframes connected.

The network that you probably all know about was 1669’s ARPANET, the precursor of The Internet,
which was connecting a number of research institutions and military facilities, financed by DoD,
and having the main objective to survive a nuclear war.

What made it so innovative was the packet switching technology, the possibility to access the
data and applications on any of the machines within the network from any other machine, also it
had the first email.

Alexandru Burlacu Autumn 2020

Packet Switching. Why? How?

What makes modern computer networks so efficient is the packet switching technology.

It is used to ensure maximum chance of delivery, with latency and speed as good as possible.

Basically, that means that information is splitted into packets of predefined size and sent over
network. In case there’s some congestion on the way, the packets are switched through other
routes, thankfully the networks have some redundancy.

Packets are sent through the fastest route, but that doesn’t always mean it is the shortest route.
Think GPS with information about traffic jams.

Alexandru Burlacu Autumn 2020

Packet Switching. Why? How?

A packet is sort of a wrapper around the chunk of data that the system is trying to send.
It has a header and a trailer. Most meta information is in the header, while the trailer is used to
make clear how where the packet is ending.

For example, the header of a packet contains the sender and receiver addresses, the number of
packets to be sent, the id of a specific packet, some control information.

For TCP, if a packet is lost or corrupted, it is resent, but more on that later.

Alexandru Burlacu Autumn 2020

A quick refresher: Topology

First there was the the mainframe with multiprogramming capabilities, and many client machines
in a star topology.

Then, came the bus and later the ring topologies. But it was never enough.

And later, the router was invented and compute machines became affordable. At that point
networks could be built just like they are now, more or less. So the mesh topology emerged.

Relatively recently peer-to-peer (P2P) networks emerged.

And there are also ad-hoc networks, like P2P but ad-hoc.

Alexandru Burlacu Autumn 2020

A quick refresher 2: Computer networks challenges

More computers, that are also interlinked, plus having devices to link them and provide different
services, all this makes the system more fragile/prone to issues and vulnerabilities.
1. High maintenance cost
2. Increased budget for devices and software
3. Necessity for specialized staff to keep the network running normally
4. Security concerns (higher attack surface for hackers, spread of malware)
5. Authorization and access control
6. Basically your machines could burn, so you need backups
7. Et cetera

Alexandru Burlacu Autumn 2020

A quick refresher 3: Computer networks requirements

For a computer network to be useful, it should be analyzed, and perform well in certain
dimensions.
1. Functionality - the more, the merrier
2. Efficiency (latency, response time, transfer speed, bandwidth)
3. Resilience and fault tolerance
4. Security
5. Availability
6. Quality of Service
7. Integrity and coherence
8. Monitoring and traffic control
9. Scalability

10. Adaptability

Alexandru Burlacu Autumn 2020

Computer networks standards

To be extensible and scalable… and easy and cheap to maintain, … and interoperable, the
components of a network are desirable to be obey Open Standards. Both Open and Standards
are important words here. Let’s dissect.
Open - open means that the specification is freely available for everyone, and doesn’t have
licencing costs. Specifications are not standards.
Standards - standards are complete, formal specifications that are crystalized and through a
consensus decided to be canonical. Standards are maintained and developed by standardization
institutions, like ISO, ANSI, IEEE, NIST, ECMA, or others.

Alexandru Burlacu Autumn 2020

The IEEE 802 project
Since February 1980,
IEEE started working on
802.x suite of standards
that cover all network
components.

Just wikipedia it.

*Source: www.hill2dot0.com/wiki/index.php?title=IEEE_Project_802

http://www.hill2dot0.com/wiki/index.php?title=IEEE_Project_802

Alexandru Burlacu Autumn 2020

Internet development organizations

ISOC (INTERNET Society) - Internet evolution and development. IAB (Internet Architecture
Board) - technical control. IETF (Internet Engineering Task Force) and IRTF (Internet Research
Task Force) - solve actual problems and do long term research, correspondingly.

Communication

Alexandru Burlacu Autumn 2020

Alexandru Burlacu Autumn 2020

Communication objectives

We have 3 primary reasons to use communication:

- Data transfer, as in HPC (Accelerate computing), or microservices (Modularization)

- Data sharing, as in Google Drive, or Amazon S3

- Synchronization, or control, as in telling the other party what to do

*Source: Communication Over Networking - PR 2017, UTM, conf.univ. PhD Ciorbă Dumitru

Alexandru Burlacu Autumn 2020

Communication paradigms

Shared memory
- Efficient
- Error prone
- Really good when processes are local to a machine

Message passing
- Shines when running on multiple machines
- Abstracts away the location of the process
- Less error prone

Remote invocation
- Just as Message Passing, but now you abstract away even the fact that you have another

process. It feels like calling a function

Alexandru Burlacu Autumn 2020

Communication paradigms: Direct and Indirect

Direct Communication - processes communicate directly, obviously, it is efficient but not
scalable. And not that flexible too. RPC and Queues and concurrent objects communicate like
this.

Indirect Communication - processes communicate through an intermediary, like a message
queue or a mailbox. It is less efficient but lets you build systems which can handle variable number
of agents communicating, efficiently.

Alexandru Burlacu Autumn 2020

Data Transfer. Dimensions.

*Source: Communication Over Networking - PR 2017, UTM, conf.univ. PhD Ciorbă Dumitru

Alexandru Burlacu Autumn 2020

Data Transfer. Interactions.

*Source: Communication Over Networking - PR 2017, UTM, conf.univ. PhD Ciorbă Dumitru

Alexandru Burlacu Autumn 2020

Data Transfer. Buffering.

*Source: Communication Over Networking - PR 2017, UTM, conf.univ. PhD Ciorbă Dumitru

Alexandru Burlacu Autumn 2020

Communication granularity

Services - REST or SOAP or RPCs (Java RMI, .NET Remoting, CORBA, gRPC, Thrift) and all that
network protocols of high level

Messages - Message Queues, WebSockets, Events and pipes/streams

Bytes - Files and pipes, Sockets (BSD ones)

Alexandru Burlacu Autumn 2020

Pipes

Pipes are an inter-process communication method (IPC) which shares some concepts with both
shared memory and message passing paradigms.

On implementation level pipes are special temporary files. Pipes obey the so-called stream
processing paradigm, which says that there’s only one concrete producer and consumer and that
the communication is unidirectional.

Pipes are usually OS primitives, and sometimes one can be bidirectional and named.

Alexandru Burlacu Autumn 2020

Pipes

The simplest example of a pipe, in UNIX systems, would be something like this expression
ps -aux | grep -E “<some regexp pattern>” Do you know what it does?

The `|` operator creates a temporary store in memory in which the output content from the first
command is written into, and simultaneously used as input for the second command. This is an
anonymous pipe. Pipes are good as IPC within a system. They are usually faster than sockets.

There are also named pipes. Here’s how these are created in Linux mkfifo <pipe_name>.
Having a named pipe is useful because it can be used as a channel between processes and it
won’t go away when the processes are done. By alternating read and write sessions, these can
ensure bidirectional communication, so are kind of Half-duplex (HDX).

See also: https://stackoverflow.com/questions/18568089/whats-the-difference-between-pipes-and-sockets
 and http://hassansin.github.io/fun-with-unix-named-pipes
 and https://stackoverflow.com/questions/1235958/ipc-performance-named-pipe-vs-socket#1238819

https://stackoverflow.com/questions/18568089/whats-the-difference-between-pipes-and-sockets
http://hassansin.github.io/fun-with-unix-named-pipes
https://stackoverflow.com/questions/1235958/ipc-performance-named-pipe-vs-socket#1238819

Alexandru Burlacu Autumn 2020

Stating the obvious

Network programming in most cases is about a client application/service/whatever talking to a
server. This is even an architectural pattern, called client-server architecture.

Client
- Wants something from the server
- Establishes the connection

Server
- Fulfils clients desires
- Is oblivious of his clients up until the connection is established
- Can’t normally ask anything from the client

And because usually
there are more clients

than servers...

Alexandru Burlacu Autumn 2020

Concurrency

Alexandru Burlacu Autumn 2020

Concurrency is NOT Parallelism!

Alexandru Burlacu Autumn 2020

Alexandru Burlacu Autumn 2020

Concurrency is NOT Parallelism! Definition

“[...] concurrency refers to the decomposability property of a program, algorithm, or problem into
order-independent or partially-ordered components or units.” - Leslie Lamport*
“A concurrent program whose processes „are executed in an abstract parallelism, that is, not
necessarily on distinct processors” - Horia Georgescu**

Concurrency is about ability to perform certain program fragments independently, but not
necessarily these running at the same time. I.o.w. one can run some code concurrently, yet have
just one thread of execution running at the same time. Think JS, or Python/Ruby threads with GIL.

Parallelism is about actually running fragments of programs simultaneously.
Distribution is… pain… and unreliable components… and we’ll talk about it during PAD.

**”Programarea concurenta. Teorie si aplicatii” - Georgescu, Horia, 1996
*"Time, Clocks, and the Ordering of Events in a Distributed System" - Leslie Lamport.

Alexandru Burlacu Autumn 2020

What is a Process? Definition

Long story short, process is an instance of a computer program, the execution of the computer
program.

Processes are said to own an image of the executable machine code, some memory, a call stack
and a heap.

Being managed by the OS (unless otherwise specified), processes have also OS-specific
attributes, like permissions, file descriptors, et cetera.

Their state is commonly called context - registers content and physical memory addressing.

Alexandru Burlacu Autumn 2020

What is a Thread? Definition

A thread is “[...] the smallest sequence of programmed instructions that can be managed
independently [...]” - Leslie Lamport* (again)

Remember! Threads are owned by processes. Multiple threads can exist within one process,
executing concurrently and sharing resources (memory, variables, address space), while different
processes do not share these resources.

Also remember - even classic threads are considerably cheaper to create and operate than
processes.

*"How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs" - Leslie Lamport.

Alexandru Burlacu Autumn 2020

Threads and Processes

In Linux the computer can potentially can
hold up to 32k+ processes, or sometimes up
to ~4.2mln, depending on the OS (cat
/proc/sys/kernel/pid_max) and
the number of threads per process is (cat
/proc/sys/kernel/threads-max) around 125k, but
can be overwritten.

Alexandru Burlacu Autumn 2020

Threads and Processes. Costs.

Context switch, that is moving from one process/thread to another process/thread is a costly
operation, just as spawning a new one is costly too. Processes need a lot of resources, but
threads do need some memory too, for the execution stack. On a modern processor, spawning an
OS thread could be as costly as at least 8MB of memory*, although that value can be overwritten.

An OS thread needs between 1 to 5 microseconds, on average. A process on the other hand,
depending on the number of file handles it owns, and memory, and OS, can take between 3-5 to
sometimes as much as 35 microseconds.

Note that user-space threads, like goroutines, Ruby fibers or Python gevent threads, switch almost
an order of magnitude faster, sometimes as fast as a couple of hundreds of nanoseconds.

*Source: https://unix.stackexchange.com/questions/127602/default-stack-size-for-pthreads

https://unix.stackexchange.com/questions/127602/default-stack-size-for-pthreads

Alexandru Burlacu Autumn 2020

Threads: Preemptive vs Cooperative

Depending on the nature of the threads, the scheduling can be either preemptive or cooperative.
Both have drawbacks. Usually, system threads are preemptively scheduled, via context switches
while more lightweight ones (think green threads in Python, fibers in Ruby, or even Node’s event
loop) are managed in a cooperative way.

Cooperative - the thread should yield control of execution
Drawback - high risk of starvation, deadlock possible

Preemptive - there’s a scheduler that might interrupt one thread and let another one running
Drawback - high risk of race conditions, convoy locks are possible

Alexandru Burlacu Autumn 2020

Threads: Standalone or Pooled?

Say you have to call a bunch of URLs, concurrently, and as you call them, more are coming (just
like your lab)?
Recall that number of threads a system can handle is bounded by how many resources you have.
Besides there’s always a cost (time) for launching a new thread.

What could you do?

Alexandru Burlacu Autumn 2020

Threads: Standalone or Pooled?

Recycle!! Recycle!! Recycle!! Recycle!! Recycle!! Recycle!! Recycle!!

Alexandru Burlacu Autumn 2020

Threads: Standalone or Pooled?

Recall the object pool pattern. Where you have a pool or resources/objects that represent some
resources, and are shared. Once you are done using them, just put them back from where you got
them.

In case of a shared pool of threads, there are 2 important variations - fixed and expandable pools.
Depending on a use case, you might opt for one or another.

Think about trade-offs, experiment, see what’s working best for you.

Alexandru Burlacu Autumn 2020

Threads: Standalone or Pooled?

When not to use a pool of threads?

1. You have a long running process that you are certain will be running
2. You want to isolate some critical code from the main thread, for security or whatever
3. The cost of switching between threads is too expensive for you
4. Yes

Alexandru Burlacu Autumn 2020

Talking about pooled: Work-stealing

When we’re talking about a thread pool, we usually imply having a task queue, where we submit
what needs to be done, and then as the workers do their work it is accessed for more tasks.

The issue - it is very possible to have the workers compete for access to the queue. A possible
solution would be for each worker to have it’s task queue, and the incoming tasks distributed
uniformly among them.

But what happens if some worker has longer running tasks, and others are already done?

Stealing time! The idle workers check their neighbours queue for work, and “steal” from them
tasks. It seems like in practice, such an approach is faster than having just one queue.

Concurrency: Perils and Solutions

Alexandru Burlacu Autumn 2020

Alexandru Burlacu Autumn 2020
*Four Horsemen of the Apocalypse - Viktor Vasnetsov, 1887

Race-Conditions
Livelocks

Starvation

Deadlocks

Alexandru Burlacu Autumn 2020

Example 1: Say two threads access the code below, what will be `x`?
```
if (x == 42) { // The "Check"
   x = x * 2; // The "Act"
}
```

Example 2: Say N threads run the loop below, what will be `y`?
``` // given y = 0
for (int i = 0; i < 1000; ++i) {
   y = y + 1;
}
```

Issue 1

Alexandru Burlacu Autumn 2020

A “race condition” can be defined as “Anomalous behavior due to unexpected critical dependence
on the relative timing of events” [FOLDOC]

Given at least 2 threads that try to access some shared data and try to change it at the same time,
a race condition occurs, due to the thread scheduling algorithm that can swap between threads
at any time. Therefore, the threads are racing to access/change the data.

Possible solution: use locks, or atomic variables/constructs.

Special case: Data Race (when memory is corrupted)

Issue 1: Race Conditions

Alexandru Burlacu Autumn 2020

Mutex aka Mutual Exclusion is a solution to the race condition problem when multiple threads try
to access a shared resource.

The requirement for mutual exclusion was first identified, and a solution was proposed, by Edsger
Djikstra in a 1965 paper ”Solution of a problem in concurrent programming control”.

Mutex basically solves the problem by designating a so-called critical section in the program, a
segment of the program where the manipulation of the shared resource happens, and enforcing
that only one thread can access it at any given time, others have to wait.

Synchronization Primitives 1: Mutex

Alexandru Burlacu Autumn 2020

Thus, a program has 4 distinct segments,
and therefore a thread can be in 4 states.

Mutexes can be enforced both on software
and hardware level.

On hardware level common ways are
preventing interrupts in critical sections,
busy-waiting, or through atomic operations,
most notably test-and-set and
CAS (compare-and-swap).

Synchronization Primitives 1: Mutex

Alexandru Burlacu Autumn 2020

Can a mutex be locked more than once?

A mutex is a lock. Only one state (locked/unlocked) is associated with it. However, a recursive
mutex can be locked more than once (POSIX compliant systems), in which a counter is associated
with it, yet retains only one state (locked/unlocked). The programmer must unlock the mutex as
many number times as it was locked.*

What happens if a non-recursive mutex is locked more than once?

Deadlock. If a thread which had already locked a mutex, tries to lock the mutex again, it will enter
into the waiting list of that mutex, which results in deadlock.*

Synchronization Primitives 1: Mutex

*Source: https://www.geeksforgeeks.org/mutex-vs-semaphore/

https://www.geeksforgeeks.org/mutex-vs-semaphore/

Alexandru Burlacu Autumn 2020

Mutexes, also known as locks, have so-called granularity: how fine/coarse is the segment of the
program inside the critical section.

Two important properties to keep in mind are lock contention and lock overhead.

Overhead happens due to the memory and computational requirements of a lock (it ain’t for free).
Contention happens when a thread has to wait until another thread releases a lock.

What one must remember is that there’s always a trade-off: less locks mean smaller overhead but
worse contention while more locks mean smaller contention but more overhead.

Synchronization Primitives 1: Mutex; Contention vs Overhead

Alexandru Burlacu Autumn 2020

Supposing you have some threads that are trying to read from some resource, and some threads
want to write into that shared resource. How to achieve mutual exclusion? What about reading
only when values have changed?

Readers-Writers problem

Alexandru Burlacu Autumn 2020

Readers-Writers problem

In such a case, having multiple readers at the same time accessing the resource is fine.

While if there’s at least one writer that is accessing the shared resource, mutual exclusion is
required, otherwise all sorts of nasty things (race conditions, memory corruptions even) could
happen.

It is possible to solve this problem using Mutexes, but that means blocking of reader threads,
which is bad. Another mechanism is required.

Alexandru Burlacu Autumn 2020

Q1: So, you can restrict access to a resource, but how can you make others know when it’s
available?

Synchronization Primitives 2: Signaling

Alexandru Burlacu Autumn 2020

Q2: How do you make possible to have dependent events. That is, order the execution of threads
based on occurrences of particular events?

Synchronization Primitives 2: Signaling

Alexandru Burlacu Autumn 2020

Q1: So, you can restrict access to a resource, but how can you make others know when it’s
available?

Q2: How do you make possible to have dependent events. That is, order the execution of threads
based on occurrences of particular events?

A: You need some sort of signaling mechanism. Let’s first talk about the Semaphore.

Synchronization Primitives 2: Signaling

Alexandru Burlacu Autumn 2020

Among the first synchronization mechanisms was the semaphore.

A semaphore is simply a variable, with two functions associated with it: wait() and signal() .
Originally P and V from passering ("passing") and vrijgave ("release") respectively, from Dutch.

The concept of a semaphore was first proposed by Egdar Djikstra in early 1960s while working on
the operating system for Electrologica X8 computer, later known as THE multiprogramming
system.

Synchronization Primitives 2.1: Semaphore

Alexandru Burlacu Autumn 2020

The semaphore functions:

function V(semaphore S):
 S = S + 1

function P(semaphore S):
 while (S <= 0) {}
 S = S - 1

Synchronization Primitives 2.1: Semaphore

Alexandru Burlacu Autumn 2020

Semaphore tracks how many resources are available, not which ones are available. If only one
resource is (binary semaphore) tracked, it is similar to a mutex/lock, though you should NEVER
assume they are equivalent! If there are more than one resources, it is called counting
semaphore.

The difference you should be aware about is that mutex/lock is a locking mechanism, while the
semaphore is a signaling mechanism.

An important consideration about the semaphores: although it takes into account how many
resources are available, it doesn’t know about which resources are free.

Synchronization Primitives 2.1: Semaphore

Alexandru Burlacu Autumn 2020

Readers-Writers problem

Having semaphores, now it is feasible to solve the readers-writers problem.

The simplest, but not the general case, is the following algorithm:

1. Reader will run after Writer because of read semaphore.

2. Writer will stop writing when the write semaphore has reached 0.

3. Reader will stop reading when the read semaphore has reached 0.

Alexandru Burlacu Autumn 2020

3 Shades of Readers-Writers problem

In practice, there are at 3 most popular readers-writers problems which impose different
constraints and might result in different unwanted behaviour.

Many languages even have a specialized reader-writer lock.

Alexandru Burlacu Autumn 2020

Shades of Readers-Writers problem: Basic

// Writers
resource.wait()
// critical section
resource.signal()

// Readers
mutex.wait()

// critical section
read_count++
if read_count == 1

resource.wait()
mutex.signal()

// perform reading

mutex.wait()
// critical section
read_count--
if read_count == 0

resource.signal()
mutex.signal()

Alexandru Burlacu Autumn 2020

Shades of Readers-Writers problem: No-starvation

// Writers
service_queue.wait()

resource.wait()
// critical section

service_queue.signal()

// perform writing
resource.signal()

// Readers
service_queue.wait()

mutex.wait()
// critical section
if read_count == 0

resource.wait()
read_count++

mutex.signal()
service_queue.signal()

// perform reading

mutex.wait()
// critical section
read_count--
if read_count == 0

resource.signal()
mutex.signal()

Alexandru Burlacu Autumn 2020

Say you want to work on a resource given some condition/state. How do you do that?
You check it. Again and again? That’s busy-waiting.

Generally it’s an anti-pattern, but…

… given specific circumstances, it might be a good idea to not use numerous hardware interrupts
but just check some value periodically.

Also, if a context switch would be more expensive, busy-waiting should be applied.

Synchronization Primitives 2.2: Busy-waiting

Alexandru Burlacu Autumn 2020

How to spot busy-waiting?

1. You have a multithreaded program
2. You have something like

while((local_val = some_global_val) == desired_state) {}

That’s busy-waiting, enjoy.

Btw, as an extension to this idea, check Spinlocks, and these slides:
http://cs.iit.edu/~khale/class/intro-os/s19/handout/lec10.pdf

Synchronization Primitives 2.2: Busy-waiting

http://cs.iit.edu/~khale/class/intro-os/s19/handout/lec10.pdf

Alexandru Burlacu Autumn 2020

Generally, a condition variable is used to avoid busy-waiting. Although similar to the Semaphore,
the difference is mostly on why use a specific primitive.

Semaphores are like condition variables that are always true/always execute. They are actually
used to pass access to some resources.

Condition variables are like semaphores that are signaled on some condition. They are used to
notify sleeping threads of some event and awake them.

Synchronization Primitives 2.3: Condition variables

For more detailed info check: https://cs61.seas.harvard.edu/wiki/images/1/12/Lec19-Semaphores.pdf
 https://stackoverflow.com/questions/3513045/conditional-variable-vs-semaphore#3514382
 https://www.microsoft.com/en-us/research/wp-content/uploads/2004/12/ImplementingCVs.pdf

https://cs61.seas.harvard.edu/wiki/images/1/12/Lec19-Semaphores.pdf
https://stackoverflow.com/questions/3513045/conditional-variable-vs-semaphore#3514382
https://www.microsoft.com/en-us/research/wp-content/uploads/2004/12/ImplementingCVs.pdf

Alexandru Burlacu Autumn 2020

A condition variable could be thought as a wait-queue with a blocking wait and signal/wakeup
operations. To use a condition variable one needs a condition and a mutex, to keep the
condition-checking code thread-safe.

And so, the following steps happen:
1. The mutex is acquired
2. The condition is checked
3. Block and release mutex if condition is true, else release mutex

Synchronization Primitives 2.3: Condition variables

Alexandru Burlacu Autumn 2020

Synchronization Primitives 2.3: Condition variables

#include <iostream>
#include <thread>
#include <functional>
#include <mutex>
#include <condition_variable>
using namespace std::placeholders;
class Application
{
 std::mutex m_mutex;
 std::condition_variable m_condVar;
 bool m_bDataLoaded;
public:
 Application()
 {
 m_bDataLoaded = false;
 }

 void loadData()
 {
 // Make This Thread sleep for 1 Second
 std::this_thread::sleep_for(

std::chrono::milliseconds(1000));
 std::cout<<"Loading Data from
XML"<<std::endl;
 std::lock_guard<std::mutex> guard(m_mutex);
 m_condVar.notify_one();
 }

 bool isDataLoaded()
 {
 return m_bDataLoaded;
 }

Alexandru Burlacu Autumn 2020

Synchronization Primitives 2.3: Condition variables

 void mainTask()
 {
 std::cout<<"Do Some Handshaking"<<std::endl;
 std::unique_lock<std::mutex> mlock(m_mutex);
 // Start waiting for the Condition Variable to get signaled
 // Wait() will internally release the lock and make the thread to block
 // As soon as condition variable get signaled, resume the thread and
 // again acquire the lock. Then check if condition is met or not
 // If condition is met then continue else again go in wait.
 m_condVar.wait(mlock, std::bind(&Application::isDataLoaded, this));
 std::cout<<"Do Processing On loaded Data"<<std::endl;
 }
};

*Code example from: https://thispointer.com/c11-multithreading-part-7-condition-variables-explained/

https://thispointer.com/c11-multithreading-part-7-condition-variables-explained/

Alexandru Burlacu Autumn 2020

Synchronization Primitives 2.3: Condition variables

int main()
{
 Application app;
 std::thread thread_1(&Application::mainTask, &app);
 std::thread thread_2(&Application::loadData, &app);
 thread_2.join();
 thread_1.join();
 return 0;
}

*Code example from: https://thispointer.com/c11-multithreading-part-7-condition-variables-explained/

https://thispointer.com/c11-multithreading-part-7-condition-variables-explained/

Alexandru Burlacu Autumn 2020

TL;DR: Having 2 threads, both are running/aren’t blocked, yet the task isn’t coming to completion.
Because they switch states continuously.

Longer version: Livelocks happen usually when the lock hierarchy isn’t respected, so even if the
threads are running, they acquire or release the locks in such a way, that there’s no possibility of
both locks being released.

Issue 2: Livelocks

Alexandru Burlacu Autumn 2020

Example (C#-ish):
var lock1 = new LockObjectLikeMutexOrSemaphore();
var lock2 = new LockObjectLikeMutexOrSemaphore();
Thread.Start(()=> { // Thread 1

while(true) {
if(!lock1.Lock(1000)) {

continue;
}
if (!lock2.Lock(1000)) {

continue;
}/// do some work});

// Next to the left

Issue 2: Livelocks

// Continue
Thread.Start(()=> { // Thread 2

while(true) {
if(!lock1.Lock(1000)) {

continue;
}
if (!lock2.Lock(1000)) {

continue;
}/// do some work});

Alexandru Burlacu Autumn 2020

TL;DR: When the system blocks due to the fact that necessary resources for one set of processes
are acquired by another set of processes, these in turn requiring the resources held by the first set.

Deadlock can arise if following four conditions hold simultaneously (Necessary Conditions)
Mutual Exclusion: One or more than one resource are non-sharable (Only one process can use at
a time)
Hold and Wait: A process is holding at least one resource and waiting for resources.
No Preemption: A resource cannot be taken from a process unless the process releases the
resource.
Circular Wait: A set of processes are waiting for each other in circular form.
These conditions are known also as Coffman conditions.

Issue 3: Deadlocks; Coffman conditions

Alexandru Burlacu Autumn 2020

Example 1:
```
/* PROCESS 0 */
flag[0] = true; 
while (flag[1]) 
    /* do nothing */; 
/* critical section*/; 
flag[0] = false;
// Continuation on the left

Issue 3: Deadlocks

// Next
/* PROCESS 1 */
flag[1] = true;
while (flag[0])
    /* do nothing */;
/* critical section*/;
flag[1] = false;
```

*Example from: William Stallings, “Operating Systems: Internals and Design Principles”, Appendix A

Alexandru Burlacu Autumn 2020

Initially formulated by Djikstra, and presented in its final form by Tony Hoare, this problem is meant
to show synchronization problems in a concurrent system, and how to deal with them.
The original example is full of details but it is elemental to know this: there are 5 philosophers and
a bowl of spaghetti, each philosopher has a named chair, and between philosophers there’re
forks, “but such is the tangled nature of spaghetti a second fork is required to carry it to the
mouth”*. So, there are 5 forks and 5 hungry mouths.

How to ensure that each can forever continue to alternate between eating and thinking, assuming
that no philosopher can know when others may want to eat or think?

Dining Philosophers

*Source: “Communicating Sequential Processes”, Tony Hoare, 1985

Alexandru Burlacu Autumn 2020

Although formulated in order to illustrate the risk of a deadlock, depending on solution proposed,
one can experience also livelock and resource starvation. Hell…

So, to get starting, imagine that all philosophers are competitive, and everyone picks his fork
asap… and won’t let go. At some point in time someone will have to call the ritual services.

A more elaborate plan would be to establish a rule by which every philosopher who’s waiting more
that T has to give up his fork and wait another T smthgs until trying to re-acquire that fork.

Will it work?

Dining Philosophers

Alexandru Burlacu Autumn 2020

It won’t.

If by some unfortunate circumstances all 5 philosophers will grab their forks at the same time,
forego of them, at the same time, wait T time, then try again ad infinitum, they will livelock.

What was that ritual services number again?

Dining Philosophers

Alexandru Burlacu Autumn 2020

So, there are 3 well-known solution to this problem.

First is to use a so-called resource hierarchy.
So, you number the forks (1-5 for example), and the rule is, if you're using two forks, you need to
pick up the lower numbered fork first.
By this rule, the last philosopher won’t be able to grab the 5th fork (why?) and will have to wait
until another fork is released.

No deadlock. No livelock even.

Still not good (why??).

Dining Philosophers

Alexandru Burlacu Autumn 2020

Because it’s slow, as hell. And also hard to deal with if resources are not known in advance.

Another solution is have a policy that philosophers either grab 2 forks, or none and some enforcing
mechanism, like a waiter.
In software this is implemented through a semaphore.

But there’s a problem with this approach… and it’s not just reduced parallelism by having another
entity in the process.

Dining Philosophers

Alexandru Burlacu Autumn 2020

It’s resource starvation. Because in principle it is possible for a philosopher to never eat under this
policy (how?).

The last solution was proposed by K. Mani Chandy and J. Misra, and this one seems to solve all
the problem of the previous ones.

So, let’s say all the forks are initially dirty. And the philosophers are ID-ed/numbered. For every pair
of philosophers, give the fork to the one with the smaller ID. When a philosopher needs a fork, he
asks his neighbor for a fork and either (1) he doesn’t get a fork if it is clean, or (2) gets a fork if it
dirty and the neighbor cleans it before sending over. When a philosopher has eaten, all his forks
are dirty.
The guys who are starving get a higher priority than the guys who are eating! No more problems!

Dining Philosophers

Alexandru Burlacu Autumn 2020

You should really check this one out, especially if you saw “Parks and Recreation”:
adit.io/posts/2013-05-11-The-Dining-Philosophers-Problem-With-Ron-Swanson.html

Dining Philosophers

http://adit.io/posts/2013-05-11-The-Dining-Philosophers-Problem-With-Ron-Swanson.html

Alexandru Burlacu Autumn 2020

Definition: When a process is perpetually denied access to a resource to complete its work, you
get yourself resource starvation.

Causes: Issues with thread scheduling (too simple) or mutual exclusion algorithm (deadlocks),
Resource leaks, Deliberate attacks (fork bombs).

Issue 4: Resource Starvation

*Source: https://stackoverflow.com/a/1162610 or https://stackoverflow.com/questions/1162587/what-is-starvation

https://stackoverflow.com/a/1162610
https://stackoverflow.com/questions/1162587/what-is-starvation

Alexandru Burlacu Autumn 2020

Definition: When a process is perpetually denied access to a resource to complete its work, you
get yourself resource starvation.

If for an algorithm it is impossible to have resource starvation, it is said to be starvation-free or
finite-bypass, that is, a process will be bypassed a limited number of times before being allocated
necessary resources.

Another way to solve it: Aging technique - gradually increasing the priority of processes that wait
in the system for a long time.

Issue 4: Resource Starvation

Alexandru Burlacu Autumn 2020

Think about it: You have 5 threads, all of them do some work, and once all of them are done, you
want to proceed to the next stage in your program. How do you do it efficiently?

Synchronization Primitives 3: Barrier

Alexandru Burlacu Autumn 2020

Using control variables or other synchronization primitives could become cumbersome, that’s why
barriers where proposed.

A barrier is basically a shared mutex with a counter and a flag. When the wait method is called a
predefined number of times the mutex is released for all threads simultaneously.

Barriers are mostly used in parallel programming, for example in MapReduce jobs or implicitly in
OpenMPI Scatter/Gather/Reduce/Allreduce routines.

Synchronization Primitives 3: Barrier

Alexandru Burlacu Autumn 2020

b = Barrier(2, timeout=5)

def server():
 start_server()
 b.wait()
 while True:
 connection = accept_connection()
 process_server_connection(connection)

def client():
 b.wait()
 while True:
 connection = make_connection()
 process_client_connection(connection)

Synchronization Primitives 3: Barrier

*Code example from: https://docs.python.org/3/library/threading.html#barrier-objects

https://docs.python.org/3/library/threading.html#barrier-objects

Alexandru Burlacu Autumn 2020

Very similar to a readers writers problem, there’s a bounded buffer, or queue, between the
processes, rather than a shared resource. The problem is to make sure that the producer won't try
to add data into the buffer if it's full and that the consumer won't try to remove data from an empty
buffer.

A possible solution is to make the producer either discard data or go to sleep if the buffer is full,
and the consumer goes to sleep if the buffer is empty. Both need to communicate (be awaken)
when there’s either a free slot in the buffer or it is not empty anymore.

An inadequate solution could result in a deadlock where both the producer and the consumer are
waiting to be awaken.

Producer-Consumer problem

Alexandru Burlacu Autumn 2020

Let’s level up a bit.

Queues let us do message-passing/share-nothing (sort of) concurrency which is known to be safer
and less error prone.

Also queues have a higher abstraction level than conditional variables, mutexes, semaphores, et
cetera, which is good most of the time.

Complex concurrency models like CSP and Actor model (which we’ll discuss during the Real-Time
programming course) use queues and message passing.

Synchronization Primitives 4: Queues and (Circular) Buffers

Alexandru Burlacu Autumn 2020

As written in Portland Pattern Repository - “A circular buffer is a memory allocation scheme where
memory is reused (reclaimed) when an index, incremented modulo the buffer size, writes over a
previously used location. A circular buffer makes a bounded queue when separate indices are used
for inserting and removing data. The queue can be safely shared between threads (or processors)
without further synchronization so long as one processor enqueues data and the other dequeues it.
(Also, modifications to the read/write pointers must be atomic, and this is a non-blocking
queue--an error is returned when trying to write to a full queue or read from an empty queue). Note
that a circular buffer with n elements is usually used to implement a queue with n-1 elements”

In practice circular buffers are more efficient than simple queues in streaming scenarios where
there are lots of puts and takes.

Synchronization Primitives 4: Queues and (Circular) Buffers

Alexandru Burlacu Autumn 2020

public class Squarer {

 private final BlockingQueue<Integer> in;
 private final BlockingQueue<SquareResult> out;
 // Rep invariant: in, out != null

 /** Make a new squarer.
 * @param requests queue to receive requests from
 * @param replies queue to send replies to */
 public Squarer(BlockingQueue<Integer> requests,
 BlockingQueue<SquareResult> replies) {
 this.in = requests;
 this.out = replies;
 }

Synchronization Primitives 4: Queues and (Circular) Buffers

*Code example from: http://web.mit.edu/6.005/www/fa15/classes/22-queues/

http://web.mit.edu/6.005/www/fa15/classes/22-queues/

Alexandru Burlacu Autumn 2020

 /** Start handling squaring requests. */
 public void start() {
 new Thread(new Runnable() {
 public void run() {
 while (true) {
 // TODO: we may want a way to stop the thread
 try {
 // block until a request arrives
 int x = in.take();
 // compute the answer and send it back
 int y = x * x;
 out.put(new SquareResult(x, y));
 } catch (InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 }}).start(); } }

Synchronization Primitives 4: Queues and (Circular) Buffers

*Code example from: http://web.mit.edu/6.005/www/fa15/classes/22-queues/

http://web.mit.edu/6.005/www/fa15/classes/22-queues/

Alexandru Burlacu Autumn 2020

If by now you decided that preemptive multithreading/multitasking is probably the best solution,
let me break it to you, it has its own demons. Like Priority Inversion.

Priority Inversion is a situation when a high priority task is indirectly preempted by a lower priority
task effectively inverting the relative priorities of the two tasks. Why is it even dangerous? What if
your log writer thread indirectly preempted the UI thread - then your UI is stuck, therefore bad user
experience. Or what if instead of the UI thread, something more mission critical was preempted?

A good explanation here: https://stackoverflow.com/questions/4252158/what-is-priority-inversion

Priority Inversion problem

https://stackoverflow.com/questions/4252158/what-is-priority-inversion

Alexandru Burlacu Autumn 2020

So how does this happen?

Say we have 3 threads, T1, T2, T3 with
respective priorities.

If T1 acquires a lock, and is preempted by
T2, then T3 which has highest priority, if
requiring the same lock as T1, will be
preempted too, effectively T2 preempted T3.

Priority Inversion problem

*Source: https://cmdlinelinux.blogspot.com/2013/12/priority-inversion-how-to-avoid-it.html

https://cmdlinelinux.blogspot.com/2013/12/priority-inversion-how-to-avoid-it.html

Alexandru Burlacu Autumn 2020

There are a number of solutions for this problem.

First, so called priority ceiling. It means that shared locks have very high priority, it sometimes
being the highest priority of any task which may lock the resource, and the threads/processes
holding them will be assigned same priority as these locks.

Another method, priority inheritance, temporarily assigns to the low priority task the priority of
the highest waiting priority task for the duration of its use of the shared resource, thus keeping
medium priority tasks from preempting the low priority task. Quite similar to priority ceiling.

Basically, priority ceiling doesn’t care if the lock is being waited by a higher priority task. Priority
inheritance does.

Priority Inversion problem

Current Status

Alexandru Burlacu Autumn 2020

Many Flavors of Concurrency

Alexandru Burlacu Autumn 2020

Implementations

Alexandru Burlacu Autumn 2020

Actors Event Loop/
Coroutines

CSP
(communicating
sequential
processes)

STM (software
transactional
memory)

Also:
- Tasks/Futures
- Dataflow
- Just Threads

Concurrency: Collections

Alexandru Burlacu Autumn 2020

Alexandru Burlacu Autumn 2020

Concurrent Collections: Why?

For non-mutating operations like map/filter/foreach it is possible, even trivial, to run
operations concurrently (or even in parallel). This sort of operations are called massively, or
embarrassingly parallel.

It is even possible to run operations like scan/reduce/aggregate concurrently or in parallel, if
the objects in the given collections obey certain laws (Monoid laws, but don’t sweat it).

Now, given that it is possible to run some operations very efficient, how do you accomplish
thread-safety for mutating operations or even getters? Just use synchronization mechanisms.*

*Beware, most concurrent collections have this mechanisms, so applying another mutex, for
example, to work with them will likely cause a deadlock.

Alexandru Burlacu Autumn 2020

Synchronized vs Concurrent Collections

Some languages implement both Synchronized and Concurrent collection.

One might ask why?

Synchronized collections are a more coarse-grained way to ensure thread safety for collections.

Concurrent collections, on the other hand usually provide a more fine-grained synchronization
mechanisms. For example usually one can read from a concurrent collection using multiple
threads, while only one thread can write.

Alexandru Burlacu Autumn 2020

Synchronized Collections: Java

Found in java.util.Collection interface, it’s static methods/wrappers provide ways to make
any generic Java collection a thread-safe one, not in the most efficient way thought.
For example:
Collection<Integer> syncCollection = Collections.synchronizedCollection(new ArrayList<>());
 Runnable listOperations = () -> {
 syncCollection.addAll(Arrays.asList(1, 2, 3, 4, 5, 6));
 };

 Thread thread1 = new Thread(listOperations);
 Thread thread2 = new Thread(listOperations);
 thread1.start();
 thread2.start();
 thread1.join();
 thread2.join();

 assertThat(syncCollection.size()).isEqualTo(12);
}

Alexandru Burlacu Autumn 2020

Concurrent Collections: Java

Now, the Concurrent collections in Java can be found in java.utils.concurrent package,
these achieve thread-safety by dividing their data into segments.

BlockingQueue , ConcurrentMap and ConcurrentNavigableMap interfaces can be found in
this package, and their implementations too.

In a ConcurrentSkipList , the only implementation of ConcurrentNavigableMap , for
example, different threads can acquire locks on each segment, so multiple threads can access the
Skip List at the same time (a.k.a. concurrent access) making it extremely fast.

Alexandru Burlacu Autumn 2020

Synchronized Collections: C#

Just like Java (no surprise here) C# has both synchronized and concurrent collections.

To make a collections synchronized, wrap your collection in the SynchronizedCollection<T>
class. Essentially, it will add locks to every method of your original collection, ensuring thread
safety. It waits you in the System.Collections.Generic namespace since .NET 2.

Also there you’ll find SynchronizedKeyedCollection<K, V> and
SynchronizedReadOnlyCollection<T> classes there.

Nothing new. Moving on.

Alexandru Burlacu Autumn 2020

Concurrent Collections: C#

The System.Collections.Concurrent namespace is much newer (.NET 4+), and just like
java.util.concurrent provides collections with much more fine grained access, therefore higher
performance. They also use SpinLocks that are in a way, smart. If need to wait long, they use
locks, otherwise, busy-waiting.

These classes no longer use locks to provide thread safety, which means they should scale
better in a situation where multiple threads are accessing their data simultaneously.

Here you’ll find BlockingCollection<T> that provides bounding and blocking functionality for
any collection, also ConcurrentDictionary<K,V> , ConcurrentQueue<T> ,
ConcurrentStack<T> , ConcurrentBag<T> more specialized classes.

The only reason to opt for slower synchronized collections is if (1) you target older .NET 2 or
earlier systems, or (2) need something that implements the IList<T> interface.

Alexandru Burlacu Autumn 2020

Concurrent Collections: Python

First things first, Python doesn’t have true concurrent collections, as compared to Java and C#,
but on the other hand a lot of existing collections are by default synchronized.

For example, all Queues in Python are thread safe. But only the Queue from the
multiprocessing module can be used between processes.

In a way, all Python collections are thread safe. Why?

Another important point, when working with multiple threads or processes and shared variables
and collections are desired, use Managers.

Alexandru Burlacu Autumn 2020

Concurrent Collections: Fork-Join approach

One could say that Fork-Join is a parallel design pattern. Basically one parallelizes (fork) certain
sections of a program and then collects all the subsolutions (join).

Fork-Join can be applied recursively until a specific level of granularity is achieved.
A simple way to reason about it: Divide et Impera but the for each subtask spawn/fork a process.

mergesort(A, lo, hi):
 if lo < hi: // at least one element of input
 mid = ⌊lo + (hi - lo) / 2⌋
 fork mergesort(A, lo, mid) // process (potentially) in parallel with main
task
 mergesort(A, mid, hi) // main task handles second recursion
 join // join is NOT a barrier, only one thread continues
 merge(A, lo, mid, hi)

Alexandru Burlacu Autumn 2020

● https://dwheeler.com/secure-programs/ By David A. Wheeler (there’s a PDF on the site too)
● https://stackoverflow.com/questions/34510/what-is-a-race-condition
● https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for

-linux-threads/
● https://eli.thegreenplace.net/2018/launching-linux-threads-and-processes-with-clone/

Reading list

https://dwheeler.com/secure-programs/
https://stackoverflow.com/questions/34510/what-is-a-race-condition
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/launching-linux-threads-and-processes-with-clone/

Alexandru Burlacu Autumn 2020

GIL, Atomicity, Lock convoy, Thundering herd problem
Optimistic concurrency control, Compare-and-swap, Read-Copy-Update
ReaderWriterLock, Petri nets, MVCC, Banker’s Algorithm

Keywords (Good to know)

Protocols

Alexandru Burlacu Autumn 2020

Before we dive into
Protocols, let’s talk sockets

Alexandru Burlacu Autumn 2020

Alexandru Burlacu Autumn 2020

BSD Sockets

Also known as Berkeley Sockets are an API for dealing with system sockets, and therefore
communication over network. The API was first introduced in 1983, and still used today.

A socket is an abstract representation (handle) for the local endpoint of a network communication
path. The Berkeley sockets API represents it as a file descriptor (file handle) that provides a
common interface for input and output to streams of data.

Usage of files is the result of adoption of Unix philosophy (better google it) which in this case states
that “everything is a file”, that is streaming text interfaces are the lingua franca of Unix programs.

See also: https://cis.temple.edu/~giorgio/old/cis307s96/readings/docs/sockets.html

https://cis.temple.edu/~giorgio/old/cis307s96/readings/docs/sockets.html

Alexandru Burlacu Autumn 2020

BSD Sockets

BSD Sockets are just a set of functions...

● socket() creates a new socket, of some type
● bind() associates a socket with an address
● listen() causes a bound TCP socket to enter listening state
● connect() assigns a free local port number to a socket
● accept() accepts a received incoming attempt to create a new connection,

creates a new socket associated with the socket address pair of this connection
● send(), recv(), sendto(), and recvfrom() are used for sending and receiving data
● close() causes the system to release resources allocated to a socket
● et al.

Alexandru Burlacu Autumn 2020

BSD Sockets

BSD Sockets are just a set of functions, types…

socket(3) creates an endpoint for communication and returns a file descriptor for the socket.

● domain - [AF_INET, AF_INET6, AF_UNIX]
● type - [SOCK_STREAM, SOCK_DGRAM, SOCK_SEQPACKET, SOCK_RAW]
● protocol - specifying the actual transport protocol to use. The most common are

IPPROTO_TCP, IPPROTO_SCTP, IPPROTO_UDP, IPPROTO_DCCP. Usually optional.

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Alexandru Burlacu Autumn 2020

BSD Sockets

BSD Sockets are just a set of functions, type and a workflow (more or less).
Here’s the TCP example:

Server
Create a socket
bind to an address
Set to listen
accept clients
send/receive data
close connection

Client
Create a socket
connect to some host/port
send/receive data
close connection

Alexandru Burlacu Autumn 2020

BSD Sockets: Ruby Example - simple

Creating a socket connection
require ‘socket’
socket = TCPSocket.new(“fcim.utm.md”, 80)
socket.write "GET / HTTP/1.1"
socket.write "\r\n\r\n"
puts socket.recv(1024)
guess what will it be?

… or a socket server
socket = TCPServer.new(“0.0.0.0”, 8080)
client = socket.accept
puts "New client! #{client}"
client.write("Hello from server")
client.close

And finally allowing the server to handle multiple
clients (what could go wrong?)
socket = TCPServer.new('0.0.0.0', 8081)

def handle_connection(client)
 puts "New client! #{client}"
 client.write("Hello from server")
 client.close
end

puts "Listening on #{8081}"
loop do
 client = socket.accept
 Thread.new { handle_connection(client) }
end

Alexandru Burlacu Autumn 2020

BSD Sockets: Java Client Example - simple, and verbose
 ...
 URL u = new URL(args[i]);
 if (u.getPort() != -1) port = u.getPort();
 if (!(u.getProtocol().equalsIgnoreCase("http"))) {
 System.err.println("I only understand http.");
 }
 if (!(u.getFile().equals(""))) file = u.getFile();
 Socket s = new Socket(u.getHost(), port);
 OutputStream theOutput = s.getOutputStream();
 OutputStreamWriter out = new OutputStreamWriter(theOutput);
 out.write("GET " + file + " HTTP/1.0\r\n");
 out.write("Accept: text/plain, text/html, text/*\r\n");
 out.write("\r\n");
 out.flush();
 InputStream in = s.getInputStream();
 InputStreamReader isr = new InputStreamReader(in);
 BufferedReader br = new BufferedReader(isr);
 ... // check for IO exceptions and MalformedURLException

Alexandru Burlacu Autumn 2020

BSD Sockets: Java Server Example - simple, and verbose

try {
 ServerSocket ss = new ServerSocket(2345);
 Socket s = ss.accept();
 Writer out = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));
 out.write("Hello There!\r\n");
 out.write("Goodbye now.\r\n");
 out.flush();
 s.close();
}
catch (IOException e) {
 System.err.println(e);
}

*Code example from:
http://www.cafeaulait.org/slides/sd2000east/sockets/Java_Network_Programming__Part_2__Sockets__Server_Sockets__and_
UDP.html

http://www.cafeaulait.org/slides/sd2000east/sockets/Java_Network_Programming__Part_2__Sockets__Server_Sockets__and_UDP.html
http://www.cafeaulait.org/slides/sd2000east/sockets/Java_Network_Programming__Part_2__Sockets__Server_Sockets__and_UDP.html

Alexandru Burlacu Autumn 2020

BSD Sockets: Python Example

First of all, see https://docs.python.org/3.6/library/socketserver.html
Python allows pretty simple implementation of socket servers by splitting server code from
request handler and from concurrency. A more low-level example would be this:

with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
 s.bind((HOST, PORT))
 s.listen()
 conn, addr = s.accept()
 with conn:
 print('Connected by', addr)
 while True:
 data = conn.recv(1024)
 if not data:
 break
 conn.sendall(data)

https://docs.python.org/3.6/library/socketserver.html

Alexandru Burlacu Autumn 2020

BSD Sockets: Final words

BSD Sockets can be used for both network communication and IPC. Moreover, for IPC, on UNIX
systems, there are UNIX-domain sockets, which are considerably faster than going through the
TCP/IP stack.

Even using localhost is not nearly as fast as using UNIX sockets (OS feature), which are
compatible with BSD Sockets (API).

Also, because it is a widespread and known API, you should opt for it rather than using lesser
known, even if faster, approaches.

Alexandru Burlacu Autumn 2020

I/O Multiplexing: Selecting and Polling

The first step towards efficient I/O is to understand that most of the time the system is just waiting
for read/write/connect operations, or going lower-level, filling some buffers.

Wouldn’t it be great if we can start such a tasks and come back to it later, when it’s done, in the
meantime launch some other similar task, but for other resources?

Using file descriptors selection (select system call) or polling (poll or epoll system call) this
becomes possible. Both approaches check for some events, usually READ and WRITE events, but
it varies.

Alexandru Burlacu Autumn 2020

I/O Multiplexing: Selecting vs Polling

● They both handle file descriptors in a linear way. The more descriptors you ask them to
check, the slower they get. More than a hundred file descriptors - depending on your
hardware - you will start noticing that waiting for file descriptor activity and the following
checking which file descriptor that it was, takes a significant time and becomes a bottleneck.

● The select() API with a "max fds" as first argument forces a scan over the bitmasks to find
the exact file descriptors to check for, which the poll() API avoids. A small win for poll().

● select() only uses (at maximum) three bits of data per file descriptor, while poll() typically uses
64 bits per file descriptor. In each syscall invoke poll() thus needs to copy a lot more over to
kernel space. A small win for select().

Polling and Selecting are basically the same speed-wise: slow. For more info, check this answer:
https://stackoverflow.com/a/3951845/5428334

https://stackoverflow.com/a/3951845/5428334

Alexandru Burlacu Autumn 2020

I/O Multiplexing: Async I/O

What you need to know about asynchronous I/O is that it is a single threaded solution which
interleaves operation in a cooperative way (using await, or by calling a callback function) for
example. An await basically means yielding the resources to the event loop so that it will decide
who gets to run in foreground now.

An event loop is a loop that runs forever and knows about some functions and their state, so that
it can schedule which one should be running. Python asyncio, JS, Ruby EventMachine and
many other similar tools use event loops.

For Python, you should really check out this: https://realpython.com/async-io-python/.
Even if you use some other language, the principles mainly hold.

*Async the JS way: https://www.taniarascia.com/asynchronous-javascript-event-loop-callbacks-promises-async-await

https://realpython.com/async-io-python/
https://www.taniarascia.com/asynchronous-javascript-event-loop-callbacks-promises-async-await

Alexandru Burlacu Autumn 2020

I/O Multiplexing: Event loops

In order to achieve canonical async we need an event loop. An event loop is a programming
pattern that in theory is very simple:

while True:
 events = event_queue.pop()
 for event in events:
 event.execute()

Within event it is possible to submit new tasks to the event_queue. It better be a priority queue
or some kind of select/poll/epoll .

In practice it’s much harder to do.

*How JS uses the event loop: https://www.youtube.com/watch?v=8aGhZQkoFbQ

https://www.youtube.com/watch?v=8aGhZQkoFbQ

Alexandru Burlacu Autumn 2020

I/O Multiplexing: Event loops

The main issues arise from the following:
- how to abstract away the event loop properly
- how to submit tasks (and how they should look like)
- making sure that everything that is passed in the event loop is non-blocking

In a way these are less of event loop’s issues and more of how to efficiently embed them within a
system.

*How JS uses the event loop: https://www.youtube.com/watch?v=8aGhZQkoFbQ

https://www.youtube.com/watch?v=8aGhZQkoFbQ

Alexandru Burlacu Autumn 2020

I/O Multiplexing: Reactors

Another beast related to event loops is the reactor. One of the most widely known reactor-based
systems is the Twisted Python networking library. A reactor is a mechanism for synchronous
execution of tasks.

Basically, with a reactor you will wait for a handler (read socket/file/timer/whatever) to be ready to
be used. So a reactor is using system calls like select or poll/epoll/kqueue to check
whenever a resource is ready to be run.

*Original reactor paper: http://www.dre.vanderbilt.edu/~schmidt/PDF/reactor-siemens.pdf
 and a very nice, gradual implementation: https://hila.sh/2019/12/28/reactor.html

http://www.dre.vanderbilt.edu/~schmidt/PDF/reactor-siemens.pdf
https://hila.sh/2019/12/28/reactor.html

Alexandru Burlacu Autumn 2020

I/O Multiplexing: Reactors

Alexandru Burlacu Autumn 2020

I/O Multiplexing: ... and Proactors

An even more interesting approach is to wait not for handles to be ready to execute, but rather to
be done executing. Proactor is similar to reactor pattern, with the difference that the execution on
all stages is async. Usually for a proactor to work properly one needs OS support.

The Windows IOCP (IO completion ports) are similar to select and co, but adopt a more
“proactor-like” behaviour.

For most languages, the proactor pattern is a bit of a hack, because to execute in the background
they might, not necessarily do, spawn threads.

*Original proactor paper: https://www.dre.vanderbilt.edu/~schmidt/PDF/Proactor.pdf
also check: https://www.artima.com/articles/io_design_patterns.html

https://www.dre.vanderbilt.edu/~schmidt/PDF/Proactor.pdf
https://www.artima.com/articles/io_design_patterns.html

Alexandru Burlacu Autumn 2020

select Python Example
import selectors
sel = selectors.DefaultSelector()
...
lsock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
lsock.bind((host, port))
lsock.listen()
print('listening on', (host, port))
lsock.setblocking(False)
sel.register(lsock, selectors.EVENT_READ, data=None)
...
while True:
 events = sel.select(timeout=None)
 for key, mask in events:
 if key.data is None:
 accept_wrapper(key.fileobj) # create a session
 else:
 service_connection(key, mask) # continue working
*Code example from: https://realpython.com/python-sockets/,
try to modify into Proactor: https://www.slideshare.net/Arbow/the-proactor-pattern

https://realpython.com/python-sockets/
https://www.slideshare.net/Arbow/the-proactor-pattern

Alexandru Burlacu Autumn 2020

select Python Example

def accept_wrapper(sock):
 conn, addr = sock.accept() # Should be ready to read
 print('accepted connection from', addr)
 conn.setblocking(False)
 data = types.SimpleNamespace(addr=addr, inb=b'', outb=b'')
 events = selectors.EVENT_READ | selectors.EVENT_WRITE
 sel.register(conn, events, data=data)

*Code example from: https://realpython.com/python-sockets/

https://realpython.com/python-sockets/

Alexandru Burlacu Autumn 2020

select Python Example

def service_connection(key, mask):
 sock = key.fileobj
 data = key.data
 if mask & selectors.EVENT_READ:
 recv_data = sock.recv(1024) # Should be ready to read
 if recv_data:
 data.outb += recv_data
 else:
 print('closing connection to', data.addr)
 sel.unregister(sock)
 sock.close()
 if mask & selectors.EVENT_WRITE:
 if data.outb:
 print('echoing', repr(data.outb), 'to', data.addr)
 sent = sock.send(data.outb) # Should be ready to write
 data.outb = data.outb[sent:]
*Code example from: https://realpython.com/python-sockets/

https://realpython.com/python-sockets/

Alexandru Burlacu Autumn 2020

Transport protocols: TCP

Transmission Control Protocol (TCP, IETF RFC 793) is one of the most well-known network
protocols, and dates back to ‘80s. It is a stream-oriented protocol that ensures congestion control,
in-order data delivery and error-checking with re-transmission of corrupted or lost data chunks. In
other words a very reliable protocol, made in the time where network was extremely unreliable.

Now, let’s break down the fancy words describing TCP:
- stream-oriented - data is sent as a stream, thus chunked into packets implicitly, not by the

user
- congestion control - a mechanism that ensures that no more packets are sent than the

connection allows. Think a way to quickly get rid of traffic jams.
- in-order data delivery, error-checking, and re-transmission should be self explanatory

Alexandru Burlacu Autumn 2020

Before we dive into transport layer...

We need to clear out some things about IP. It is a best-effort communication protocol that treats
each packet separately, and therefore can lose data, transport corrupted data, and deliver packets
out-of-order. In summary, it’s unreliable.

It only checks whenever the header is error-free.

All the nice things we get from the Internet are because of higher level protocols that deal with it.

Also, the packets that IP uses can vary in size, because of the underlying network properties,
that’s why TCP packets usually use a significantly smaller size than the conventional IP maximum
transmission unit (MTU) size. Mostly it’s 1500 bytes.

Alexandru Burlacu Autumn 2020

Before we dive into transport layer...

One also needs to understand some even lower level details about the network in order to
efficiently use it.

First of all, depending on the type of physical connection used, there are 2 ways signals can flow
through, in FDX (full-duplex) and HDX (half-duplex). It means that it is possibly to send signals
both ways through the same channel, or it is necessary to alternate the destinations between
transmissions, respectively. FDX is how modern Ethernet works, HDX is how named pipes work.

Also, take into account that FDX/HDX describe whenever or not the signals are flowing through the
connection at the same time or alternating. HDX does not imply that communication is
unidirectional. Just like with named pipes, it is possible to have bidirectional communication using
unidirectional channels, or rather, half-duplex channels.

Alexandru Burlacu Autumn 2020

Congestion control

A few words on TCP congestion control (CCA). There are multiple algorithms for it.
Classic TCP uses a so-called Additive increase - multiplicative decrease (AIMD) mechanism to
control congestion. The idea is simple - if congested, continuously decrease the number of
packets sent by dividing the maximum number of packets within some time interval, and once
congestion is gone, start increasing the traffic by adding packets sent per some time interval.

Another interesting mechanism is keeping the number of packets sent initially low and
exponentially increasing that number once the connection was established. This is called
slow-start.

There’s a lot more to TCP congestion control, so check out the references at the end of the slides.

Alexandru Burlacu Autumn 2020

Congestion control

How do we know we have a congestion in the network?

Most algorithms just use loss information as a proxy of how congested a network is.
Some use gray-box methods, like the mechanisms that employ fast retransmits based on
estimation of round-trip time (RTT) and maximum bandwidth.

There are event so-called green-box methods, that is methods that receive information about
network congestion from the network itself, via special protocols, flags in TCP headers, or other
methods. All in all, these methods require special hardware and setup. But seem to be most
optimal.

*For more info on CCA: https://stackoverflow.com/questions/8683722/how-can-i-do-congestion-control-for-a-udp-protocol

https://stackoverflow.com/questions/8683722/how-can-i-do-congestion-control-for-a-udp-protocol

Alexandru Burlacu Autumn 2020

Congestion control

Among other techniques it’s worth noting such mechanisms as choke packets, which could in
principle emulate the behavior of green-box models.

Whatever method is used, some things remain constant, like the fact that TCP estimates all these
things using congestion window (CWND) and receiver window (RWND). These are some counters.

Generally congestion control is subset of flow control.
An example of flow control in TCP is sending the RWND from receiver to the sender so it knows
how much data to send to receiver and no more, so as not to overwhelm it.

*For more info on cwnd/rwnd check: https://blog.stackpath.com/glossary-cwnd-and-rwnd/

https://blog.stackpath.com/glossary-cwnd-and-rwnd/

Alexandru Burlacu Autumn 2020

Congestion control

TCP is using sliding windows for both congestion and flow control.

A TCP cwnd window is the amount of unacknowledged data a sender can send on a particular
connection before it gets an acknowledgment back from the receiver, that it has received some of
the data.

The receiving device should acknowledge each packet it received, indicating the sequence
number of the last well-received packet. After receiving the ACK from the receiving device, the
sending device slides the window to right side.

*For more info on cwnd/rwnd check: https://blog.stackpath.com/glossary-cwnd-and-rwnd/

https://www.omnisecu.com/tcpip/tcp-header.php
https://blog.stackpath.com/glossary-cwnd-and-rwnd/

Alexandru Burlacu Autumn 2020

Congestion control

TCP not-acknowledges packets by sending
duplicated ACKs of for the last continuous
series of packets. In such situations, all packets
between the not acknowledged one and the
ones already sent are retransmitted.

A solution for this is using so called selective
acknowledgements (SACK) that acknowledge
specific packets.

*For more info on sack check: https://www.youtube.com/watch?v=VERgI8QaYPY

https://www.youtube.com/watch?v=VERgI8QaYPY

Alexandru Burlacu Autumn 2020

Transport protocols: TCP
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
Data		U	A	E	R	S	F	
Offset	Reserved	R	C	O	S	Y	I	Window
		G	K	L	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
 +-+

Sequence Number - The sequence
number of the first data octet in this
segment (except when SYN is
present).
Acknowledgement Number - If the
ACK control bit is set this field
contains the value of the next
sequence number the sender of the
segment is expecting to receive.
Once a connection is established this
is always sent.
Data Offset - Number of 32-bit
words in the TCP header
Reserved - always 0

Alexandru Burlacu Autumn 2020

Transport protocols: TCP
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source Port | Destination Port |
 +-+
 | Sequence Number |
 +-+
 | Acknowledgment Number |
 +-+
Data		U	A	E	R	S	F	
Offset	Reserved	R	C	O	S	Y	I	Window
		G	K	L	T	N	N	
+-+								
Checksum	Urgent Pointer							
+-+								
Options	Padding							
+-+								
data								
 +-+

URG - Urgent Pointer field significant
ACK - Acknowledgment field
significant
EOL - End of Letter (0/1)
RST - Reset the connection (0/1)
SYN - Synchronize sequence numbers
(0/1)
FIN - No more data (0/1)
Window - the number of data octets
beginning with the one indicated in the
acknowledgment field which the
sender of this segment is willing to
accept.

Alexandru Burlacu Autumn 2020

Transport protocols: TCP

TCP 3-Way Handshake for Connection Synchronization
 TCP A TCP B

 1. CLOSED LISTEN
 2. SYN-SENT --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED
 3. ESTABLISHED <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED
 4. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED
 5. ESTABLISHED --> <SEQ=101><ACK=301><CTL=ACK><DATA> --> ESTABLISHED

Basically, TCP has a special way to make sure that the connection is established.
First, (2) the sender sends a SYN message to the receiver, indicating that it will use sequence
numbers starting with sequence number 100, then (3) the receiver responds with an ACK
message, (4) and finally (before sending actual data) the sender sends and ACK as a response to
receiver’s ACK.
Note that the sequence number doesn’t change between (4) and (5) - ACK ain’t no data.

Alexandru Burlacu Autumn 2020

Transport protocols: TCP

There’s a problem with the 3-way
handshake mechanism.
It is possible to send a lot of SYN
packets and to not send the
client-ACK (after SYN-ACK) on
purpose, thus having a lot of half
open connections, and consuming
server’s ports, resulting in DoS
(denial of server). This is called SYN
flood.

There are thankfully some mitigation
strategies.

*Source: https://en.wikipedia.org/wiki/Transmission_Control_Protocol

https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Alexandru Burlacu Autumn 2020

Transport protocols: UDP

User Datagram Protocol, described in RFC 768, is a very simple, unreliable, message-oriented
protocol, which is widely used when ordered delivery and packet loss avoidance can be sacrificed
for increased performance.
 0 7 8 15 16 23 24 31
 +--------+--------+--------+--------+
 | Source | Destination |
 | Port | Port |
 +--------+--------+--------+--------+
 | | |
 | Length | Checksum |
 +--------+--------+--------+--------+
 |
 | data octets ...
 +---------------- ...

 User Datagram Header Format (taken from RFC 768)

Alexandru Burlacu Autumn 2020

Transport protocols: UDP

UDP supports multicast and broadcast, thus being used in different service discovery protocols,
like DHCP, DNS and others.

UDP is connectionless, that means that it doesn’t have any connection protocol and can send
data right away to the desired destination. Recall that TCP does have a special connection
protocol (3-way handshake) and thus is referred as a connection-oriented protocol.

Alexandru Burlacu Autumn 2020

Brief about a lesser known protocol

Scalable TCP was designed to provide higher throughput and scalability. Standard TCP halves
the congestion window for every packet loss, and then slowly (+1/cwnd) starts to kick in to ramp
the speed back up, which is slow in high-throughput, over 100Mbps, connections.

Scalable TCP uses a similar to classic TCP algorithm, but with different additive and multiplicative
coefficients. It reduces the cwnd by ⅛ for every packet loss/timeout, resulting in a significantly
increased throughput, it also ramps up the number of packets faster (cwnd += 0.01 over cwnd +=
1/cwnd), in fact turning into an exponential function.
Check http://datatag.web.cern.ch/datatag/papers/pfldnet2003-ctk.pdf.

http://datatag.web.cern.ch/datatag/papers/pfldnet2003-ctk.pdf

Alexandru Burlacu Autumn 2020

Email protocols: SMTP/POP3/IMAP

Things you should know:
SMTP - is a standard (RFC 821 and 5321), runs on port 25, user-level email clients use it for
sending on ports 587 or 465. Normally, SMTP is used to push the message to a mail server.

POP3 - used to retrieve mails from the mail server. The primary use case for it was/is to download
data from the mail server on the local machine and then delete the messages. It uses port 110, or
995 if the traffic is encrypted (TLS, SSL, or whatever).

IMAP - is more complex than POP3. Has the notion of directories, and defaults to not deleting the
messages on the server. Runs on 143, or 993 if encrypted traffic. IMAP supports MIME data
(images, binaries, audio, almost anything) while POP3 doesn’t. It also supports multiple users of
the same mailbox. It supports flagging messages too.

Alexandru Burlacu Autumn 2020

FTP - File transfer protocol

This one will be brief too.
FTP is quite an old protocol, and it uses 2 separate connections, one for data and another one for
control.
FTP has to connection modes, active and passive. In both cases the client establishes a control
connection to servers’ port 21.
Active means the client tells the FTP server he’s listening for incoming data connection on some
port M.
Passive mode is used via sending a PASV message to the server, by the client, which results in the
server responding with a port number used by the client to establish a data connection with the
server.

FTP can be used via SSH (SFTP) or using TLS/SSL (FPTS). For more info, may Google be with you.

Alexandru Burlacu Autumn 2020

Brief-ish about another lesser known protocol

SCTP - Stream Control Transmission Protocol, described in the RFC 4960, provides features
similar to both TCP (ensures reliable, in-sequence transport of messages with congestion control)
and UDP (message oriented). It differs from those protocols by providing multi-homing aka
redundant paths to increase resilience and reliability.

The so called multi-homing is multiple IP addresses per host to increase redundancy and make
the protocol more resilient.

SCTP also supports stream multiplexing, that is, multiple datagrams/chunks, are sent within one
SCTP packet. Stream multiplexing is possible with other protocols too, but they can lead to
Head-of-Line blocking, as in TCP. SCTP only preserves the order of the messages within a single
stream to mitigate HOL.

Alexandru Burlacu Autumn 2020

SCTP multi-homing

Multi-homing means you can connect
your server to multiple routers, thus
having multiple addresses for it.

Now, what makes things interesting is
that SCTP knows it can do
multi-homing, and while being
connected to a client, can notify it about
other valid addresses, such that in case
one router fails, the server is still
reachable by the client via the other
address(es).

Alexandru Burlacu Autumn 2020

SCTP 4 way handshake

SCTP 4-way handshake
1. Sender =INIT chunk=> Receiver

Receiver generates a secure hash.

2. Receiver =INIT_ACK chunk=> Sender
Sender receives a chunk with a cookie with a secure hash and a MAC (Message Auth Code).

3. Sender =COOKIE_ECHO=> Receiver
Sender sends back a copy of the cookie with the hash.

4. Receiver =COOCKIE_ACK=> Sender
Receiver validates the information in the senders cookie. Connection is established.

Alexandru Burlacu Autumn 2020

HTTP

HTTP (HyperText Transmission Protocol) was initially proposed by TIm Berners-Lee at CERN in
1989. It is highly advised you read that proposal*.

HTTP1 and 1.1 are text based application level protocols that enforce a client server architecture.
HTTP1/1.1/2 are built atop TCP, to ensure reliable transmission. The protocol was designed in
order to facilitate easy, distributed and collaborative information management.

Hypertext part is probably one of the most important ones, because the idea is to have a web-like
information structure, rather than a hierarchical one. Having links and so called “non-linear
documents” facilitates quick discovery of necessary information.

Because of the necessity to work with text and perform many transitions, FTP was discarded.

*The proposal can be found at: w3.org/History/1989/proposal.html

https://www.w3.org/History/1989/proposal.html

Alexandru Burlacu Autumn 2020

HTTP

HTTP protocol has a number of components: header fields, body, status codes, URLs and request
methods.

Body - the hypertext document that was requested. It may contain URL addresses of other
resources.

URL - universal resource locator, that’s the technical name of a web address. It uses a URI
encoding with the scheme http or https (s for secure).
An URI looks like this:
https://jane.doe:passwd@www.somesite.org:8081/posts/?tag=atag&ord=asc#top
^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^ ^^ ^^^^^ ^^^^^^^^^^^^ ^^
 | Username + Host Port Path Query Fragment
Scheme Password (or Route)

Alexandru Burlacu Autumn 2020

HTTP

Header fields - contain information about either the request or response, like, status codes, the
type of response the user wants, the type of response the user receives, cache information,
access tokens, and so on.

Status codes - once the request was made, the response follows with a special code, that
describes how did it go. Generally 1xx codes are informative, 2xx mean success, 3xx - redirection,
4xx - client errors, 5xx - server errors. There are a number of error codes that are standard, and
there are others that are not (nginx 499), or are a joke (418, check HTCPCP).

Most common status codes are: 200 - OK, 201 - Created, 301 - Moved permanently, 400 - Bad
request, 403 - Forbidden, 404 - Not Found, 500 - Internal Server error.

Alexandru Burlacu Autumn 2020

HTTP

Request Methods - sometimes referred as verbs, define how a specific resource should be acted
upon. Commonly, methods are divided into safe and unsafe, what makes the distinction is the
purpose of the method. If the method is intended for retrieving information, it is safe.
So, GET, OPTIONS, HEAD and TRACE are safe, while POST, PUT, DELETE and some others are
not.

Another important consideration of HTTP methods is idempotency, which is the property of an
action to have the same effect whenever it was applied once or multiple times in a raw.

A primer, if you DELETE a resource twice (or any number of times), without anything else
accessing it in between actions, the result will be the same as if you delete it once.
Safe methods are idempotent, but not the other way around (PUT is idempotent).

Alexandru Burlacu Autumn 2020

HTTP

HTTP, since version 1.1 allows connection reuse, which greatly improves performance (due to
TCPs 3 way handshake and slow start mechanisms). This feature is commonly known as
keep-alive.

There’s also support for pipelining, that is sending multiple requests before receiving a response.
It has some issues with HOL blocking, that’s why it’s not used by default.

Another feature of HTTP is the possibility to do byte serving, commonly referred to as range
requests, that allows to fetch only some data from the resource. For this to work the server has to
contain Accept-Ranges header in the response, and then the client must specify the range via
Range: bytes=start-end.

Alexandru Burlacu Autumn 2020

SSE - Server Sent Events

What if it would be possible to keep a connection between server and client and allow server to
push data to the client without explicit requests?

Enter SSE, or Server-sent events.

SSE is built atop HTTP, and EventSource API is actually part of HTML5.

Depending on the language and framework used the implementations will vary, but generally you
need to return in one way or another an iterator from your route controller and also set the
Content-Type header to text/event-stream.

SSE events must have at least the data key, but can also have id, and event.

Alexandru Burlacu Autumn 2020

SSE - Server Sent Events

Flask setup omitted for brevity
@route("/stream")
def stream():
 def eventStream():
 while True:
 # Poll data from the database
 # and see if there's a new message
 if len(messages) > len(previous_messages):
 yield "data:
 {}\n\n".format(messages[len(messages)-1)])"

 return Response(eventStream(), mimetype="text/event-stream")

Alexandru Burlacu Autumn 2020

WebSockets

WebSockets are much more powerful compared to SSE. They are fully bi-directional, that is a
client and a server can communicate via a single connection, sending each other messages.

WebSockets although being different, is designed to work over HTTP. For example, WebSockets
uses HTTP to establish a connection.
 Request Response
GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: x3JJHMbDL1EzLkh9GBhXDw==
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13
Origin: http://example.com

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept:
HSmrc0sMlYUkAGmm5OPpG2HaGWk=
Sec-WebSocket-Protocol: chat

Alexandru Burlacu Autumn 2020

Briefly on HTTP/2

Compared to HTTP/1.1, HTTP/2 is now binary, and primarily focused on increased performance
and lower latency. It is also commonly used in secure variant, using TLS (transport layer security)
encryption.

HTTP/2 uses HPACK compression of the headers, provides server push mechanism (like SSE),
multiplexing multiple requests over a single TCP connection and stream prioritization.

It must be noted that since wide adoption of HTTP/2 in 2015, the WebSockets technology use is
declining, although there are still some domains where it performs fairly well.

Alexandru Burlacu Autumn 2020

Briefly on HTTP/2: Binary, multiplexing and stream prioritization

The data in HTTP/2 is converted from text to binary. The binary representation is embedded into
frames, and then into a stream, finally the streams can be prioritized. There are many benefits to it.

Binary representation is both easier to parse and has smaller footprint.
Having frames gives the possibility to interleave multiple request and response frames within a
connection, this way alleviating the HOL problem.

By giving priority to different streams it is possible to make sure the most important parts of a web
page arrive and render first, for example HTML and CSS files, then some core JS dependencies
and finally the additional JS code and maybe some images. Not only this, HTTP/2 allows do define
parent-child relation between streams.

Alexandru Burlacu Autumn 2020

Briefly on HTTP/2: Header compression

HTTP/2 header compression uses a special designed HPACK algorithm, which uses a
combination of static and dynamic dictionaries, and Huffman encoding.

First, the most common keys, or key value pairs are stored in a static dictionary and referenced.
Then, the key-values that do not change during the requests are stored in a dynamic dictionary
and referenced in the actual header. Finally, what’s left is Huffman encoded.

For more info, check http2.github.io/http2-spec/compression.html.

https://http2.github.io/http2-spec/compression.html

Alexandru Burlacu Autumn 2020

Protocol development. Representation. State machines.

An important part in designing protocols is to specify in a very detailed, non-ambiguous way, how
it works. Natural language is ambiguous, and in order to alleviate this problem, special domain
language with very strict definitions, and tons of documentation are usually needed.

An alternative, would be to use something a priori formal, an automaton, or state machine.
For our use case, designing and documenting a protocol, there are 2 main types of state
machines:

- Mealy (output determined by current state and input)
- Moore (output determined by current state only)
- both are equivalent.

Based on: http://archive.cone.informatik.uni-freiburg.de/teaching/vorlesung/protocol-design-s09/slides/04-Protocol_Specification_1.pdf

http://archive.cone.informatik.uni-freiburg.de/teaching/vorlesung/protocol-design-s09/slides/04-Protocol_Specification_1.pdf

Alexandru Burlacu Autumn 2020

Protocol development. Representation. State machines.

There’s a problem with finite state
machines, actually a number of them

- They don’t have abstraction and
composition

- They don’t allow for data
variables, thus requiring every
change to be in the state space

- They break when having
concurrency

- Problems with memory,
incapable of properly formalizing
variable length messages

Based on: http://archive.cone.informatik.uni-freiburg.de/teaching/vorlesung/protocol-design-s09/slides/04-Protocol_Specification_1.pdf

http://archive.cone.informatik.uni-freiburg.de/teaching/vorlesung/protocol-design-s09/slides/04-Protocol_Specification_1.pdf

Alexandru Burlacu Autumn 2020

Protocol development. Representation. State machines.

Due to all this problems, various solution where proposed. Note that they either lack the superior
formality of FSMs, or are too complex to use for formal verification. Still, are widely used for
documentation and design. For this course, State and Sequence diagrams will be used.

Based on: http://archive.cone.informatik.uni-freiburg.de/teaching/vorlesung/protocol-design-s09/slides/04-Protocol_Specification_1.pdf

http://archive.cone.informatik.uni-freiburg.de/teaching/vorlesung/protocol-design-s09/slides/04-Protocol_Specification_1.pdf

Alexandru Burlacu Autumn 2020

Protocol development. Representation. State machines.

Before we start, a couple of words on Sequence diagrams, their strengths and weaknesses.

Modeling a protocol in terms of a “story” where the client communicates with the server, by
outlining the sequence of messages sent to one another is indeed intuitive and easy to do, but
there’s a problem.

Sequence diagrams normally will show you only one, “happy” flow of messages between clients
and servers without becoming cluttered. This sometimes results in a number of sequence
diagrams to formally describe the protocol.

Alexandru Burlacu Autumn 2020

Protocol development. Representation. State machines.

A protocol specification consists of five distinct parts. To be complete, each specification should
include explicitly:
1. The service to be provided by the protocol
2. The assumptions about the environment in which the protocol is executed
3. The vocabulary of messages used to implement the protocol
4. The encoding (format) of each message in the vocabulary
5. The procedure rules guarding the consistency of message exchanges

The 5th part is the hardest to validate.

From: “Design and Validation of Computer Protocols” - Gerard J. Holzmann

Alexandru Burlacu Autumn 2020

Protocol development. Representation. State machines.

As an example, let’s see the so called Lynch’s protocol, which he describes in 1968 as “... a
reasonable looking but inadequate scheme published by one of the major computer manufacturers
in a system information manual.”

First, service specification:
The purpose of the protocol is to transfer text files as sequences of characters across a telephone
line while protecting against transmission errors, assuming that all transmission errors can in fact
be detected.
The protocol is defined for full-duplex (allows for transfers in two directions simultaneously) file
transfer. Positive and negative acknowledgments for traffic from A to B are sent on the channel
from B to A, and vice versa. Every message contains two parts: a message part, and a control
part.

From: “Design and Validation of Computer Protocols” - Gerard J. Holzmann

Alexandru Burlacu Autumn 2020

Protocol development. Representation. State machines.

Assumptions about the Environment:
The ‘‘environment’’ in which the protocol is to be executed consists minimally of two users of the
file transfer service and a transmission channel.

The users can be assumed to simply submit a request for file transfer and await its completion.

The transmission channel is assumed to cause arbitrary message distortions, but not to lose,
duplicate, insert, or reorder messages.

From: “Design and Validation of Computer Protocols” - Gerard J. Holzmann

Alexandru Burlacu Autumn 2020

Protocol development. Representation. State machines.

Protocol Vocabulary:
The protocol vocabulary defines three distinct types of messages:

- ack for a message combined with a positive acknowledgment
- nak for a message combined with a negative acknowledgment
- err for a message with a transmission error.

The vocabulary can be succinctly expressed as a set: V = { ack, err, nak }.

Each message type can further be refined into a class of lower-level messages, consisting for
instance of one sub-type for each character code to be transmitted.

From: “Design and Validation of Computer Protocols” - Gerard J. Holzmann

Alexandru Burlacu Autumn 2020

Protocol development. Representation. State machines.

Message Format:
Each message consists of a control field identifying the message type and a data field with the
character code. For the example we assume that the data and control fields are of a fixed size. The
general form of each message can now be represented symbolically as a simple structure of two
fields: { control tag, data } which in a C-like specification may be specified in more detail as
follows:

enum control { ack, nak, err };
struct message { enum control tag; unsigned char data; };

The line starting with the keyword enum declares an enumeration type named control with three
possible values: one for each message type used. The message structure itself contains two
fields: a tag of type control, and a data field declared as an unsigned character (one byte).
From: “Design and Validation of Computer Protocols” - Gerard J. Holzmann

Alexandru Burlacu Autumn 2020

Protocol development. Representation. State machines.

Procedure Rules:
The procedure rules for the protocol were informally described as follows:
1. If the previous reception was error-free, the next message on the reverse channel will carry a

positive acknowledgment; if the reception was in error it will carry a negative
acknowledgment.

2. If the previous reception carried a negative acknowledgment, or the previous reception was
in error, retransmit the old message; otherwise fetch a new message for transmission.

To formalize the rules, a state and a sequence diagram are presented.

From: “Design and Validation of Computer Protocols” - Gerard J. Holzmann

Alexandru Burlacu Autumn 2020

Protocol development.

On the left the protocol is represented as a
sequence of actions/calls. It is already
visible that the protocol has issues.

First and foremost, it lacks a proper setup
and teardown procedure. Secondly, it can
only move characters if it receives other
characters. There are also more subtle bugs
in it.

Alexandru Burlacu Autumn 2020

Protocol development. Representation. State machines.

Based on: http://archive.cone.informatik.uni-freiburg.de/teaching/vorlesung/protocol-design-s09/slides/04-Protocol_Specification_1.pdf

http://archive.cone.informatik.uni-freiburg.de/teaching/vorlesung/protocol-design-s09/slides/04-Protocol_Specification_1.pdf

Alexandru Burlacu Autumn 2020

Error detection and error correcting codes

Errors in transmission happen for whatever reasons. Most common ones are rearranged bits, bit
flips, duplicate bits, deleted/lost bits, and sometimes even inserted bits. All it depends on the
network characteristics.

For example, the probability of an error in computer system circuits is 1e-15, in case of optical
fiber cables - 1e-9, coaxial ones - 1e-6, and in case of telephone links - between 1e-4 and 1e-5.
The difference is huge indeed.

Just so you would understand better, “At a rate of 9600 bits per second, it [error probability of
1e-15] would cause one single bit error every 3303 years of continuous operation. At the same
data rate, a bit error rate of 1e−4 causes a bit error, on average, once a second.”*

*From: “Design and Validation of Computer Protocols” - Gerard J. Holzmann

Alexandru Burlacu Autumn 2020

Error detection and error correcting codes

*Errors are usually of 2 types:
- Linear distortion of the original data, for instance, as caused by bandwidth limitations of the

raw data channel
- Non-linear distortion that is caused by echoes, cross-talk, white noise, and impulse noise

Also, depending on the characteristics of a given system, it might be more probable to get single
bit errors, that do not “cascade” (like RAM memory, or CPU caches) or, more likely in practice,
burst errors, that is, if an error occurs for a given bit/byte/sequence, the probability of the next
sequence to be distorted is much higher than the baseline. This understanding is important when
choosing how the system will cope with errors.

*From: “Design and Validation of Computer Protocols” - Gerard J. Holzmann

Alexandru Burlacu Autumn 2020

Error detection and error correcting codes

It should be clear that in order to cope with errors, anyhow, we need redundancy in the information
that we are trying to send.

The simplest way to at least identify that the data being sent was distorted, is to have a parity
check. The principle is truly simple. Append to the data a single bit that is either 0 or 1, in such a
way that if we XOR all the bits in the packet, they will be 0.

Say, you want to send a bit string like 011011001 over the network and ensure that if an error
occurs, you will find out about it. With a simple parity check, you add to the bit string 1, and now
when the receiver XORs all bits sequentially he will know if the data was corrupted along the way.

Or will it?

Alexandru Burlacu Autumn 2020

Error detection and error correcting codes

Error correction, or forward error control, is used to not only check for the presence of distortions
in the messages, but also, to some extent, correct them.

Say, you want to broadcast a simple weather forecast: Sunny, Rainy, Foggy, Cloudy. The minimum
amount of bits needed are 2. How many bits are necessary for a reliable transmission of this
information?

To help you with this, think of how many bits are necessary to send reliably (with error correction)
that a message was either received or not (ack and nak). The answer is 3. Treat ack as 000 and nak
as 111, if one bit is flipped in either case, you can correct it. That should work most of the time.

Alexandru Burlacu Autumn 2020

Error detection and error correcting codes

Say, you want to broadcast a simple weather forecast: Sunny, Rainy, Foggy, Cloudy. The
minimum amount of bits needed are 2. How many bits are necessary for a reliable
transmission of this information?

The answer is 5 bits. And you place the bits in a very interesting pattern, that is called Hamming
Code.
 Orig w/ Par w/ Hamming
Sunny - 00 -> 000 -> 00000
Rainy - 01 -> 011 -> 10011
Foggy - 10 -> 101 -> 11100
Cloudy- 11 -> 110 -> 01111

Alexandru Burlacu Autumn 2020

Error detection and error correcting codes

Hamming code, with an additional, overall parity bit, is a so-called Single Error Correction, Double
Error Detection (SECDED) scheme. It is primarily used in computer memory (ECC RAM).

The scheme works in the following way: the redundant bits are waived into the data bits at powers
of 2 positions (1st bit, 2nd bit, 4th bit, 8th bit, you got the idea) and these are parity bits. 1st bit is a
parity bit for the sequence 3, 5, 7… 2k+1, then 2nd bit checks the parity of 2, 3, 6, 7… 2k, 2k+1,
where k is odd. For other bits, the pattern grows.

An interesting trick is to do interleaving of hamming codes, making it possible to detect and
correct multiple bit flips per block.

See: https://www.youtube.com/watch?v=b3NxrZOu_CE

https://www.youtube.com/watch?v=b3NxrZOu_CE

Alexandru Burlacu Autumn 2020

Error detection and error correcting codes

Hamming code works well only in settings
where the probability of an error is small, and
the errors are independent of each other. Enter
Golay codes, namely the Extended Golay
Code G24, or [24, 12, 8] code, which is
capable of correcting up to 3 errors, and
detecting up to 7.

G24 can encode a 12 bit message into a 24 bit
one. It multiplies a generator matrix G with the
original message V. G is made by horizontal
concatenation of a 12 dimensional identity
matrix with a special matrix.

Alexandru Burlacu Autumn 2020

Error detection and error correcting codes

Error detection, or feedback error control, aims to detect errors and ask for retransmission. For this
purpose checksums are used. Recall simple parity check - it is a feedback error control
mechanism.

There is of course more to it. CRCs, or cyclic redundancy checks are some of the most used
methods, because of the speed and reliability of the method. CRC uses special polynomials,
represented as bits, something like: x2 - 1 will be equivalent with 101. CRCs also use modulo-2
arithmetic (lots of XORs).

The idea is to have a known, generator polynomial G(x) and the data D(x) to be sent also represent
a polynomial. Then, to the data a sequence of x zeroes is appended, and divided to G(x). The
receiver will check the remainder, and if it is not 0 (or sometimes 1) it will known an error in
transmission happened.

Alexandru Burlacu Autumn 2020

Error detection and error correcting codes

// Pseudocode for CRC 32
def crc32_encode(data: Bytes) -> UInt32:
 crc32 = 0xFFFFFFFF
 for byte in data:
 nLookupIndex = (crc32 xor byte) and 0xFF
 crc32 = (crc32 shr 8) xor CRCTable[nLookupIndex]

 //CRCTable is an array of 256 32-bit constants, for faster compute

 crc32 = crc32 xor 0xFFFFFFFF
 return crc32

Alexandru Burlacu Autumn 2020

Error detection and error correcting codes

CRC is good at detecting all 1 and 2 bit errors, but also at detecting bursts of errors that are less
than the length of the given polynomial, for example for the popular CRC-32, the maximum error
burst that it can detect is 32 bits.

Because of its binary nature, it can be implemented efficiently in hardware, and it is, in fact.

Alexandru Burlacu Autumn 2020

Error detection and error correcting codes

Keep in mind, sometimes retransmission is a better option that trying to correct the errors.
For example when errors occur in bursts, decoding/correcting the altered message is more time
consuming then retransmission or when the error rate is low.

On the other hand, error correction is still of use, for example when broadcasting information,
when it is stored on some device rather than propagated via some network or when the error rate
is high.

Also, keep in mind that you should favor one solution over the other based on the medium via
which messages are sent, the types of errors that happen and other criteria outlined above. Don’t
try to use Hamming code when you know you’ll have burst errors, and don’t try to fix bit flips when
you mainly get reordered data.

Alexandru Burlacu Autumn 2020

Text vs Binary representations

By now it should be known that the messages sent through the network can be either binary or in
text. But why do we have both?

Biggest pro for using text representation is that it is human readable, and therefore easier to
debug. Besides, a message in text format should in principle be more portable.

On the other hand, binary is more compact, generally easier to parse. Therefore more efficient. But
it is much harder to debug and might have some compatibility issues.

The wide adoption of text formatted messages despite being less efficient should be a hint on how
important readability is in software engineering.

Alexandru Burlacu Autumn 2020

Serialization? Marshaling?

Some say these are different, some dare to disagree, still the issue is the following.

Sending some local data structure (list, dict, class, struct), with or without references, over the
network. This means transforming it into some “transferable” format, like bytes, or JSON, or
something else, text or binary.

Special care should be taking in regards to the references. Why? Because a reference on one
computer won’t make sense on another. Same address, different city situation.

That usually means materializing (substituting) the reference with the actual value.

Alexandru Burlacu Autumn 2020

Serialization? Marshaling?

Serialization is a big topic in and of itself, with issues like backward compatibility, forward
compatibility, dealing with references, even being able to make different runtimes communicate, if
our format is cross-language/cross-platform.

Also, there are major security threats related to object serialization/deserialization.

We don’t have time for these topics, regretfully.

See: http://erights.org/data/serial/jhu-paper/intro.html
also check: M. Kleppman, Designing Data-Intensive Applications, “Formats for Encoding Data” at p. 112

http://erights.org/data/serial/jhu-paper/intro.html

Alexandru Burlacu Autumn 2020

Byte ordering. Endianness.

Say you have an int32 number represented in hexadecimal: 0x00C0FFEE (that’s 12648430).
How will you store it in memory?

Alexandru Burlacu Autumn 2020

Byte ordering. Endianness.

The most obvious way would be [00, c0, ff, ee], that is with the least significant bit (LSB) on the
right. In other words, the most significant byte (MSB) is stored first and the least significant last.

But there’s another way!
[ee, ff, c0, 00] - LSB stored first and MSB last.

These two ways of ordering the bytes are called big and little endian respectively.

The reason little-endianness even exists is because it is sometimes easier to design hardware,
compared to big-endian order.

Alexandru Burlacu Autumn 2020

Byte ordering. Endianness.

The reason little-endianness even exists is because it is sometimes easier to design hardware,
compared to big-endian order.

Check this C code:
union { uint8_t u8; uint16_t u16; uint32_t u32; uint64_t u64; } u = { .u64 = 0x4A };
puts(u.u8 == u.u16 && u.u8 == u.u32 && u.u8 == u.u64 ? "true" : "false");

Normally, in a little-endian system the output should be "true".
Such tricks are mainly used by programmers who write hardware drivers.

Alexandru Burlacu Autumn 2020

Byte ordering. Endianness.

Now, why should you care?

Today, however, big-endianness is the dominant ordering in networking protocols (IP, TCP, UDP).
Conversely, little-endianness is the dominant ordering for processor architectures (x86, most ARM
implementations) and their associated memory. There are some architecture that are bi-endian,
like ARM Arch64 and Power ISA by IBM.

Internet uses big-endian order for historical reasons, and because the “backbone” of the Internet
is almost impossible to update entirely, we have to live with this.

The translation between endianness is done when reading data or sending it: hton (host2net) and
ntoh (net2host).
https://betterexplained.com/articles/understanding-big-and-little-endian-byte-order/

https://betterexplained.com/articles/understanding-big-and-little-endian-byte-order/

Alexandru Burlacu Autumn 2020

● http://web.mit.edu/6.005/www/fa15/classes/21-sockets-networking/
● http://www.kegel.com/c10k.html
● https://daniel.haxx.se/docs/poll-vs-select.html
● https://thetechsolo.wordpress.com/2016/02/29/scalable-io-events-vs-multithreading-based/
● http://ecomputernotes.com/computernetworkingnotes/communication-networks/what-is-co

ngestion-control-describe-the-congestion-control-algorithm-commonly-used
● https://www.queryhome.com/tech/34483/sctp-handshake-vs-tcp-handshake
● http://archive.cone.informatik.uni-freiburg.de/teaching/vorlesung/protocol-design-s09/slides

/04-Protocol_Specification_1.pdf
● https://people.cs.aau.dk/~ask/Undervisning/MVP/html/mvp10a.pdf
● “Design and Validation of Computer Protocols” - Gerard J. Holzmann

Reading list

http://web.mit.edu/6.005/www/fa15/classes/21-sockets-networking/
http://www.kegel.com/c10k.html
https://daniel.haxx.se/docs/poll-vs-select.html
https://thetechsolo.wordpress.com/2016/02/29/scalable-io-events-vs-multithreading-based/
http://ecomputernotes.com/computernetworkingnotes/communication-networks/what-is-congestion-control-describe-the-congestion-control-algorithm-commonly-used
http://ecomputernotes.com/computernetworkingnotes/communication-networks/what-is-congestion-control-describe-the-congestion-control-algorithm-commonly-used
https://www.queryhome.com/tech/34483/sctp-handshake-vs-tcp-handshake
http://archive.cone.informatik.uni-freiburg.de/teaching/vorlesung/protocol-design-s09/slides/04-Protocol_Specification_1.pdf
http://archive.cone.informatik.uni-freiburg.de/teaching/vorlesung/protocol-design-s09/slides/04-Protocol_Specification_1.pdf
https://people.cs.aau.dk/~ask/Undervisning/MVP/html/mvp10a.pdf

Alexandru Burlacu Autumn 2020

VPN, QUIC and HTTP/3, Kerberos, SSH
RDMA, Head-of-Line blocking, TLS handshakes
Reed-Solomon codes, Viterbi algorithm and convolution error correcting codes

Keywords (Good to know)

Alexandru Burlacu Autumn 2020

Assume a cigarette requires 3 ingredients to make, tobacco, matches and paper. There are 3
people at a table, each with an infinite amount of a single resource. There’s also a non-smoker
who non-deterministically chooses 2 of the resources to put on the table. The 3rd smoker takes
the provided resources, makes a cigarette and smokes for a while.

For every resource there’s a semaphore, signaling when a resource is available. Smokers have a
semaphore too, to signal to the non-smoker that they’re done.

However, this can lead to deadlock; if the agent places paper and tobacco on the table, the
smoker with tobacco may remove the paper, leaving the smoker with matches unable to make
their cigarette. The problem is to define additional processes and semaphores that prevent
deadlock, without modifying the agent.

Annex A: Cigarette smokers problem

Alexandru Burlacu Autumn 2020

When initially proposed, in a paper researching the limits of semaphores, the problem had 2
constraints.
1. One can not modify the smoker’s code, only add
2. One can not use conditionals

The problem is impossible to solve using just semaphores, but using an array of them, and some
controlling process makes it feasible.

David Parnas later argued that the second constraint doesn’t make sense.* Someone complies
while someone else changes the game. Actually, the argument made sense, because the problem
is meant to model operating system use cases, and not using conditional statements when they
are available is plain stupid.

*See: https://kilthub.cmu.edu/articles/On_a_solution_to_the_cigarette_smokers_problem/6607826

Annex A: Cigarette smokers problem

https://kilthub.cmu.edu/articles/On_a_solution_to_the_cigarette_smokers_problem/6607826

Alexandru Burlacu Autumn 2020

Assume a barber, a chair and 2 rooms, one where the customers are waiting, and another one
where they sit in that chair and their throats are slit the barber cuts their hair.

If there are no clients, barber sleeps, if there are no seats in the waiting room, the client leaves.

Clients check on the barber and if he sleeps, they wake him up and wait for the haircut.

Based on a naïve analysis, the above decisions should ensure that the shop functions correctly,
with the barber cutting the hair of anyone who arrives until there are no more customers, and then
sleeping until the next customer arrives. In practice, there are a number of problems that can occur
that are illustrative of general scheduling problems.

Annex B: Sleeping barber problem

Alexandru Burlacu Autumn 2020

The problems are all related to the fact that the actions by both the barber and the customer
(checking the waiting room, entering the shop, taking a waiting room chair, etc.) all take an
unknown amount of time.

For example, a customer may arrive and observe that the barber is cutting hair, so he goes to the
waiting room. While they're on their way, the barber finishes their current haircut and goes to
check the waiting room. Since there is no one there (the customer not having arrived yet), he goes
back to their chair and sleeps. The barber is now waiting for a customer, but the customer is
waiting for the barber.

In another example, two customers may arrive at the same time when there happens to be a single
seat in the waiting room. They observe that the barber is cutting hair, go to the waiting room, and
both attempt to occupy the single chair.

Annex B: Sleeping barber problem

Alexandru Burlacu Autumn 2020

The problem is atributed to Djikstra. So, you might have figured out semaphores are involved.

One of the solutions involves 3 semaphores, one for the client, one for the barber and one for the
waiting room. The idea is to restrict simultaneous state transitions of entities.

def barber_proc():
 while true:
 custReady_sem.wait()
 accessWRSeats_sem.wait()
 numberOfFreeWRSeats += 1
 barberReady_sem.signal()
 accessWRSeats_sem.signal()
 # start cutting here

def customers_proc():
 while true:
 accessWRSeats.wait()
 if numberOfFreeWRSeats > 0:
 numberOfFreeWRSeats -= 1
 custReady.signal()
 accessWRSeats.signal()
 barberReady.wait()
 # Have hair cut here
 else:
 accessWRSeats.signal()
 # (Leave without a haircut.)

Annex B: Sleeping barber problem

Alexandru Burlacu Autumn 2020

Assume an emitter that has to send N messages to N receivers, and must not send another
message before the previous one was received by all receivers.

So, a trivial solution would be to have some way of blocking and signaling for receivers.

emiter
broadcast_channel.send()
receiver.signal(n_receiver)

receiver
receiver.wait()
broadcast_channel.receive()

Annex C: Emitter-Receiver problem

Alexandru Burlacu Autumn 2020

The first solution is far from good. I has no way of making the emitter wait for all the receivers to
receive the message before sending a new one. This solution solves that.

emiter
broadcast_channel.send()
receiver.signal(n_receiver)
emitter.wait()

receiver
receiver.wait()
broadcast_channel.receive()
mutex.wait()
cur_receivers += 1
if cur_receivers == n_receivers:
 emitter.signal()
mutex.signal()

Annex C: Emitter-Receiver problem

Alexandru Burlacu Autumn 2020

emiter
emitter.wait()
broadcast_channel.send()
receiver.signal(n_receiver)

receiver
all_receivers.wait()
mutex.wait()
cur_receivers -= 1
if cur_receivers == 0:
 emitter.signal()
else:
 all_receivers.signal()
mutex.signal()
receiver.wait()
broadcast_channel.receive()
mutex.wait()
cur_receivers += 1
if cur_receivers == n_receivers:
 all_receivers.signal()
mutex.signal()

Annex C: Emitter-Receiver problem

