
Real Time Programming

Alexandru Burlacu Spring 2020

Intro & Course Description

Alexandru Burlacu Spring 2020

Alexandru Burlacu Spring 2020

Concurrency
primitives +
protocols

Concurrency w/
messages +
streaming

Distributed
systems and their
perils

PR PTR PAD

Alexandru Burlacu Spring 2020

● Topics - first more advanced Concurrency, and then Message Queues, Streaming, a couple

of Protocols

● Labs - 1st Concurrency, second Message Queues and real time processing

● Midterms - two midterms, a lab (70%) + questions (3 Qs = 5 + 15 + 10)

● Exam - oral, 30 min preparation time, <16 min Q&A

● Grading policy - 10 is thresholded at 91 points, the rest are relative, following Gaussian dist.

● Attendance - Doesn’t matter. Just pass the exam and complete the labs on time

Alexandru Burlacu Spring 2020

A. Actor model
B. Communicating Sequential

Processes
C. Reactive Programming
D. Message Queues
E. MQTT and XMPP
F. Streaming Algorithms

[Higher level]
Concurrency

Alexandru Burlacu Spring 2020

Many Flavors of Concurrency

Alexandru Burlacu Spring 2020

Remember it from last semester?

Alexandru Burlacu Spring 2020

Actors Event Loop/
Coroutines

CSP
(communicating
sequential
processes)

STM (software
transactional
memory)

Also:
- Tasks/Futures
- Dataflow
- Just Threads

Alexandru Burlacu Spring 2020

Actors CSP
(communicating
sequential
processes)

+

Actor Model

Alexandru Burlacu Spring 2020

Alexandru Burlacu Spring 2020

Initially proposed by Carl Hewitt*, Actor Model was a way to structure/model concurrent systems
that took into account the perils of shared memory.

Actor Model is a message passing paradigm, inspired from physics and biology, as a result being
a bit less formal than for example CSP.

Actor Model

*Carl Hewitt; Peter Bishop & Richard Steiger (1973). "A Universal Modular Actor Formalism for Artificial Intelligence"

Alexandru Burlacu Spring 2020

One actor is no actor

Alexandru Burlacu Spring 2020

Alexandru Burlacu Spring 2020

Actors come in systems
- Actor communicate by sending messages
- Computations inside actors are sequential, but communication gives rise to concurrency

within the system
- The state in the system is still mutable, but encapsulated in many entities that are allowed to

alter it

One actor is no actor

Alexandru Burlacu Spring 2020

Sounds almost like OOP

Alexandru Burlacu Spring 2020

The fundamental idea of the actor model is to use actors as concurrent primitives that can act
upon receiving messages in different ways:
1. Create more actors
2. Send messages to other actors
3. Designate what to do with the next message by changing its own internal behavior

Actor Model - Details

Alexandru Burlacu Spring 2020

- Actor Model uses asynchronous message passing, i.e. an actor doesn’t wait for an
acknowledgement of the message by the receiver actor.

- Actor Model does not use any intermediate entities such as channels.
 Each actor possesses a mailbox and can be addressed.

- Addresses != identities.
 Each actor can have no, one or multiple addresses.

- An actor must know the address of the recipient.
Actors are allowed to send messages to themselves.

Actor Model - Details

Alexandru Burlacu Spring 2020

Actors Model based systems must be designed with a special property in mind - Inconsistency
Robustness, i.e. a system must be able to function properly even if the internal state is
inconsistent.

Sort of like social systems, like organizations, governments or communities. They are all capable
to cope with some degree of inconsistency.

This property is necessary due to the lack of in-order delivery of messages, in the formal
description of the Actor Model.

Actor Model - Details

Alexandru Burlacu Spring 2020

Today’s implementations of Actor Model, be it embedded in language, like Erlang and Elixir, or
available as libraries, like Akka for JVM systems and Celluloid for Ruby, must meet the following
capabilities:

- Fault tolerance
- Distribution transparency
- Scalability (local and nonlocal)

Actor Model - Modern capabilities

Alexandru Burlacu Spring 2020

Your default case must be one or more actors per, connection/client/whatever. Actors are light, so
it’s not a problem having plenty of them.

Due to their internal rules (being sequential) using one actor for multiple tasks doesn’t let you have
maximum concurrency in the system.

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

Supervision Tree - Actors come in systems, and their preferred system organization is a
hierarchy.

Systems built using the Actor Model tend to be hierarchical, employing special supervisor actors
that take care of the worker actors, especially when a failure occurs.

Having supervisor actors taking care of workers makes the overall system robust to failure, a
philosophy embraced and popularized by Erlang developers: Let it crash

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

Traditionally, there are 2 more popular
and one not so restart policy in case of a
failed actor:
1. one-for-one - restart only the failed

actor, for independent tasks
2. all-for-one - restart everyone under

the supervision, for interacting
tasks

3. (sometimes) rest-for-one - restart
only the actors launched after the
failed one

Actor Model - Common Patterns

See also: http://erlang.org/documentation/doc-4.9.1/doc/design_principles/sup_princ.html

http://erlang.org/documentation/doc-4.9.1/doc/design_principles/sup_princ.html

Alexandru Burlacu Spring 2020

Why Let it Crash even works?

Well, because eventually something will go wrong, and trying to cover all bad cases is not viable,
even your hardware could cause a crash, how will you try-catch it?

Of course, you should aim at writing good code, but sometimes there are errors that aren’t even
your fault, like hardware, time, or network issues. The kind of errors that occur in the most bizare
ways, these are transient errors, and Let it Crash/Fail-fast philosophy is something that can save
you even in such situations.

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

Let it Crash is said to be the philosophy to program the “happy path” and not bother about errors.
It’s not entirely like this, more like, if you don’t know how to properly (based on specs) handle the
error, don’t bother.

In combination with supervision trees and a couple of other patterns it is possible to achieve
impressive system resilience, only because the failure can be localized and handled clearly.

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

A way to structure an actor-based system
that is using supervision trees, that comes
from Erlang community, is to have a
manager (think of it as a façade pattern)
that redirects messages to different
workers (think controllers).

All of them under a single supervisor with
a all-for-one restart policy.

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

Another very common pattern when using actor model is having having a publisher-subscriber aka
observer pattern implementation. In fact, PubSub is fundamental for most modern reactive
systems, but about this later.

This way, it is possible to have topics and entities interested in receiving updates about these
topics. Actor model is especially good at it due to its distribution transparency property, and
lightweight nature.

PubSub in such languages as Elixir or Erlang is commonly done via :gen_event OTP behaviour,
but that’s just technicalities.

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

A quick reminder of what PubSub is:

You have a set of message/event
creators, let’s call them publishers,
and another set of entities that are
interested in some, or all of the
messages/events, these are
subscribers.

Subscribers can subscribe to
publishers anytime they want and
receive updates as soon as possible.

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

Character Actor, related in Erlang folklore as the Error Kernel pattern, is a way to ensure
reliability in case that the system was asked to perform a task with high error chance.

The idea is to create a dedicated actor to perform a task, such as if it fails, it won’t damage the
rest of the system, while if task completed successfully, the actor is disposed.

During the design process, identify the components that must always be correct, they are the
kernel, as in OS parlance, and the ones that could in principle be faulty. This is Error Kernel
pattern. Also, in practice, the kernel has a way to write into memory information about its state and
the state of its children, for reliability purposes.

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

Actor Recursion - for an actor to send a message, it need to know only the address of the
recipient. Because of this, an actor can in fact send a message to itself.

This way it could be possible to postpone messages that have lesser priority than others, for
example.

Note, actor recursion should not be confused with recursively spawning more and more actors.

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

Request-Reply - recall that Actor Model is asynchronous in nature, yet sometimes a way to
receive a response is necessary.

How do you imagine that is possible to achieve?

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

Request-Reply - recall that Actor Model is asynchronous in nature, yet sometimes a way to
receive a response is necessary.

How do you imagine that is possible to achieve?

Add the sender’s address/reference to the message sent, and have a way to receive the reply
on the server.

Beware, that way you introduce coupling in the system. At least make sure the sender doesn’t
block while waiting for a reply.

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

How do you perform transactions within a system using actor model?

Recall what a transaction is - a sequence of operations that either are all successful or discarded,
and the state of the system rollbacked to the state before the transaction.

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

This is actually a hard problem, and one of the reasons why transactions are rare in actor-based
systems.

Generally, if you need transactions, either try using an external database-like component, or
design a coordination protocol using messages.

Or even better, rethink your system.

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

In Erlang-land there are no definite patterns of doing transactions because of the availability of
other tools, namely ETS tables and the Mnesia database.

There was a special class in Akka 2.0.x for JVM called Transactor, today it is deprecated due to
Akka’s orientation towards distribution transparency.

Anyway, Transactor was capable to enable transaction within an actor, using STM semantics.

Actor Model - Common Patterns

Alexandru Burlacu Spring 2020

Aka
#SpotThePattern

Actor Model - Common Patterns Combined

Alexandru Burlacu Spring 2020

On a single laptop one can spawn thousands, if not hundred of thousands of actors. But keep in
mind that that same laptop won’t have more than 4 physical/8 logical cores, as of 2020.

This discrepancy between physical parallelism and actor model capabilities results in terrible
parallel performance. Recall - Concurrency is not Parallelism!!!

Therefore, a system using actors, generally, won’t work well in CPU bound tasks, like linear
algebra routines, or signal processing. On the other hand it is proven that actor model is probably
ideal for simulations, due to it’s easy mapping to multi agent systems.

Actor Model - When not to use it?

Alexandru Burlacu Spring 2020

Another more subtle problems with the actor model are not really composable and they couple
concurrency and mutual exclusion, leaving synchronization to be implemented via custom
messaging protocols.

1st, actors are not composable because, unless the developer before you was caring, the receiver
of a message is hardcoded, therefore, having 2 actors A and B, and A sends messages to C,
therefore making it non-trivial to make A send messages to B.

2nd, coupling happens as a result of actors encapsulating pices of state and having internal
sequential execution, while due to asynchronous communication, the whole system is concurrent.

Actor Model - When not to use it?

See: is broken https://noelwelsh.com/posts/2013-03-04-why-i-dont-like-akka-actors.html

https://noelwelsh.com/posts/2013-03-04-why-i-dont-like-akka-actors.html

Alexandru Burlacu Spring 2020

If you have some state, multiple threads reading and writing from/to that value will end up inducing
the possibility of deadlocks and race conditions, beside increased complexity due to
synchronization. If you put that state inside an actor, suddenly you can be sure that it's accessed
safely and you aren't dropping writes or getting stale reads.

Therefore, as a rule of thumb, use actors when you need safe state.

In case of not Erlang-based languages, Futures and Tasks are simpler and more suitable if you
don't need to mutate state.

Actor Model - When not to use it?

Alexandru Burlacu Spring 2020

Right now we are in the realm of massive concurrency.

Actor model, and further communicating sequential processes, due to their lightweight nature
allow anyone to use hundreds, thousands, even millions of concurrently running operations.

Because of this, understanding the limits of system scalability must be understood.

In this section, several formulas will be discussed:
- Little’s Law
- Amdahl’s Law
- Universal Scalability Law

Actor Model A quick not-so-off-topic

Alexandru Burlacu Spring 2020

Little’s Law is a simple equation of the behavior of queues.

It formally describes the relationship of queue size (N), throughput (X) and latency (R):
- N=XR
- X=N/R
- R=N/X

Although not all systems use queues, Little’s law still holds. For example when trying to keep the
latency at bay when the number of connections to the system surges.

Actor Model A quick not-so-off-topic

See: https://codahale.com/usl4j-and-you/

https://codahale.com/usl4j-and-you/

Alexandru Burlacu Spring 2020

Amdahl’s Law - suppose we have a data processing pipeline, processing 10k data points per
second, on a 8 core server.

Now, if you will change the CPU to a 16 core one, you will notice that the number of data points
processed isn’t 20k, more like 17-19k.

Why is that?

Actor Model A quick not-so-off-topic

Alexandru Burlacu Spring 2020

There are portions of the workload that can’t run in parallel, called serial workload.
Knowing what the fraction of the workload is serial helps understand how will it scale given more
cores/machines/compute units to run on.

 S(s) = 1/(1 - p + p/s)

- S(s) is the overall system speedup given the speedup of a certain component in the system.
- p is the ratio of the program that is subject to speedup
- and s is the speedup of that component

Actor Model A quick not-so-off-topic

Alexandru Burlacu Spring 2020

Universal Scalability Law… Before we begin, here’s a question.

Assuming an 8 core CPU on which a program that maps a numerical function to a set of values
and then aggregates the newly formed set of results, again, numerically speaking; what
configuration of the worker pool will be faster, 8 workers or 24, or even 64?

Actor Model A quick not-so-off-topic

Alexandru Burlacu Spring 2020

Universal Scalability Law was proposed by N. J. Gunther, as model which combines Amdahl’s
Law and Gustafson’s Law.

It takes into account the cost of communication between processes, to produce a nonlinear
model to predict a system’s behavior when scale changes.

Actor Model A quick not-so-off-topic

Alexandru Burlacu Spring 2020

X is the throughput of the system as a function of the level of concurrency N (think # of threads
or connections).
Sigma is the overhead of contention, how many contend for a resource
kappa - the overhead of crosstalk, how much time until consistent
and lambda is the maximum performance of the system, sometimes omitted.

Actor Model A quick not-so-off-topic

See: https://codahale.com/usl4j-and-you/
and https://blog.acolyer.org/2015/04/29/applying-the-universal-scalability-law-to-organisations/

https://codahale.com/usl4j-and-you/
https://blog.acolyer.org/2015/04/29/applying-the-universal-scalability-law-to-organisations/

Alexandru Burlacu Spring 2020

In the end, Universal Scalability Law states, and reasonably so, that as the number
cores/machines computing something in a parallel/concurrent fashion grows, at some point not
only the system will scale slower, but in fact the performance will degrade.

In a way, even context switches can be modeled as communication, due to the cache being
flushed for the other thread/worker to be resumed.

Actor Model A quick not-so-off-topic

Alexandru Burlacu Spring 2020

Assuming we scaled our program/system from 1 core to 16, and observed a 10x speedup, we
decide to try doubling the computational resources again, and notice only a 12x speedup,
compared to the baseline. We reached the scalability limit for our application. What next?

More often than not, we are not parallelizing all the parallelizable parts of our programs. Let that
sink in. We can have algorithms or systems that 90% of which can be ran in parallel, but when we
decide do add more cores into it, we only do so for a part of these 90%.

Identifying where should we optimize next, the bottleneck of our system, is what profiling is used
for.

Actor Model A quick not-so-off-topic

Alexandru Burlacu Spring 2020

When profiling some code, we measure the time it takes for each function to be executed, how
many times it happens, and we do so recursively, going in depth of our program.

Some profilers also allow for memory usage analysis. Nethertheless, using a profiler is the go-to
strategy when it comes to optimizing the code, whenever by scaling parts of it, or through other
means.

Never, ever try to optimize stuff that isn’t confirmed to be the bottleneck of the system. Neglecting
this advice can lead to anything from no speedup to an observable slowdown and inefficient
resource utilization.

Actor Model A quick not-so-off-topic

Alexandru Burlacu Spring 2020

Close your laptops; Get a sheet of paper; For forests worldwide sake, cut it up to A6 size, you
won’t need much; Share with your colleagues.

Don’t worry, the results won’t affect your midterm grades. Or maybe they will… or… we shall see.

Actor Model - Quiz Time!!

Alexandru Burlacu Spring 2020

Q1. Actor Model is based on:
a) Shared state b) Message Passing c) Voodoo magic

Q2. Actor Model’s fundamental unit/units of computation is:
a) An actor b) A routine and a channel c) An actor and a mailbox

Q3. A popular pattern for Actor Model systems is:
a) Mediator b) Supervisor c) Adapter

Q4. Actor Model should not be used when doing:
a) CPU-bound tasks b) Transactions c) IO-bound tasks

Actor Model - Quiz Time!!

Alexandru Burlacu Spring 2020

Q5. The limiting factor when running parallel/concurrent tasks is (assuming ∞ memory):
a) Communication overhead b) Context switches c) Number of threads

Q6. Any system can be modeled good enough, throughput/latency-wise:
a) Stack b) Queue c) Black Box

Q7. Erlang is fault tolerant because of:
a) Actors b) Supervisors c) it being Swedish-born

Q8. “Keeping the critical logic inside a root-actor” pattern is called:
a) Error Kernel b) Transactor c) Character Actor

Actor Model - Quiz Time!!

Alexandru Burlacu Spring 2020

- https://ferd.ca/the-zen-of-erlang.html
- https://theory.stanford.edu/~jcm/cs358-96/actors.html
- http://ulf.wiger.net/weblog/2008/02/06/what-is-erlang-style-concurrency/
- https://stackoverflow.com/questions/8107612/the-actor-model-why-is-erlang-special-or-wh

y-do-you-need-another-language-for
- http://www.perfdynamics.com/Manifesto/USLscalability.html

Actor Model - Some links

https://ferd.ca/the-zen-of-erlang.html
https://theory.stanford.edu/~jcm/cs358-96/actors.html
http://ulf.wiger.net/weblog/2008/02/06/what-is-erlang-style-concurrency/
https://stackoverflow.com/questions/8107612/the-actor-model-why-is-erlang-special-or-why-do-you-need-another-language-for
https://stackoverflow.com/questions/8107612/the-actor-model-why-is-erlang-special-or-why-do-you-need-another-language-for
http://www.perfdynamics.com/Manifesto/USLscalability.html

CSP
Communicating Sequential Processes

Alexandru Burlacu Spring 2020

Alexandru Burlacu Spring 2020

CSP, aka Communicating Sequential Processes is another well known message passing approach
to concurrency. Same as Actor Model, only different.

CSP was first proposed by Tony Hoare in 1978, as a way to formally specify the behaviour and
model concurrent systems.

Initially it was closer to Hewitt’s Actor Model, also requiring the address of the recipient to be
known, but later it switched to channels and anonymous processes.

CSP - Some History

Alexandru Burlacu Spring 2020

CSP has 2 main primitives, events and processes. They can be combined using different
operators.

Events are fundamental for CSP. They are values that determine the behaviour of the system.

Processes are anonymous in nature and either process or react depending on the event.

What about channels?

CSP - Theory 101

Alexandru Burlacu Spring 2020

Channels, which are used in practice are not really defined in CSP formalism. Rather, these are
related to the events.

Say, you can have an inp and out channel to your process but what matters to the underlying
theory are the inp.x and out.y events, where x and y are values from the inp and out channels
respectively.

CSP - Theory 101

Alexandru Burlacu Spring 2020

CSP - Theory 101

Alexandru Burlacu Spring 2020

Some of the operators specified by the CSP formalism are:
- choice operators, deterministic and non-deterministic
- interleaving, that is running 2 independent processes concurrently
- prefixing, an event and a process, together specifying a new process
- interface parallel, that is running 2 processes concurrently that need synchronization at

some point. Synchronization is done via both processes being able to process an event
before that event can occur.

- hiding, allows to simply CSP expressions, sometimes + can abstract some processes away
- sequential composition, given processes P and Q, if P runs successfully, run Q after that

CSP - Theory 102

Alexandru Burlacu Spring 2020

CSP - Theory 102: Syntax

Source: https://en.wikipedia.org/wiki/Communicating_sequential_processes for full list check CSP Book

https://en.wikipedia.org/wiki/Communicating_sequential_processes

Alexandru Burlacu Spring 2020

After synchronization, 2
processes can run
independently,
that’s how.

CSP - Theory 102: But how is it concurrent if it’s synchronous?

Alexandru Burlacu Spring 2020

Actors vs CSP

Actor Model Communicating Sequential Processes

Same:
- Message oriented
- Used for modeling/formal

specification

Same:
- Message oriented
- Used for modeling/formal

specification

Different:
- Processes/Actors have identity
- Asynchronous by default
- Built-in unbounded nondeterminism

Different:
- Anonymous processes
- Synchronous by default
- Only bounded nondeterminism

Alexandru Burlacu Spring 2020

Actors vs CSP

Practically equivalent.
One can build CSP using

Actor Model and vice versa

Alexandru Burlacu Spring 2020

“With great power comes great responsibility” - Uncle Ben minutes before dying, telling Peter
Parker not to abuse CSP in projects.

Main things to keep in mind when considering using CSP-like abstractions in your project are:
1) How expensive is it to work with, system resources-wise.
- Is it cheap to have many processes?
- Is it cheap to switch between them?
- Where in the codebase is it critical to have low latency access to resources? Hint: Look for

contentions.
2) Is it the right abstraction to work with? Hint: Might not be.

CSP - Common Patterns

Alexandru Burlacu Spring 2020

Before we start, the examples will be in a pseudocode similar to the Go programming language.

ch <- val // put a value `val` into the channel `ch`
val <- ch // assign to value `val` what you get from channel `ch`

for Loops and if statements have no ().
func name?(in_name: in_type): out_type defines a function, with optional name.
go launches a concurrent process.

For example:

go func basic(inp: ch, out: ch): void { v <- inp; out <- process(v); }

CSP - Common Patterns

Alexandru Burlacu Spring 2020

Futures are a CS concept that describes a proxy object for a result that is initially unknown,
usually because the computation of its value is not yet complete.

Depending on the language/framework in use, they can be sometimes called tasks, promises,
delays or deferred.

In scenarios where you know beforehand that you will need a value, you can start computing it on
another processor and have it ready when you need it.

Futures run just once.

CSP - Common Patterns

Alexandru Burlacu Spring 2020

func Future(arg: ArgType): ResTypeChannel {
ResTypeChannel future;
go func () { future <- Operation(arg) }();
return future;

}

// And the client code...

future_result = Future(some_arg);
result <- future_result;

CSP - Common Patterns

Alexandru Burlacu Spring 2020

Generators are a concept that describes an concept that looks like a function, i. e. can have
parameters and returns a sequence of values (in the end), but in fact, it is an iterator, that is, return
values one by one, and abstract away how these values are stored.

Generators are a weaker form of coroutines. They too can suspend their execution, but can not
specify to whom yield the execution context.

Generators can run more than just once. Potentially these can run indefinitely.

CSP - Common Patterns

Alexandru Burlacu Spring 2020

func GeneratorAdInfinitum(): ResTypeChannel {
ResTypeChannel gen;
go func () {

for i := 0; ; i++ {
gen <- i;

}
}(); return gen; } // The client code below

gen = GeneratorAdInfinitum();
next <- gen; // 1
next <- gen; // 2
next <- gen; // 3

CSP - Common Patterns

Alexandru Burlacu Spring 2020

Say you have many concurrently running processes and you want to have a way to collect data
from all of them. Or just the opposite, distribute work among processes. Then you need Fan-In
and Fan-Out respectively.

CSP - Common Patterns

Alexandru Burlacu Spring 2020

func FanInProc(...chs: Channels): ResTypeChannel {
ResTypeChannel fan_in;
for ch in chs {

go func () { for { fan_in <- <- ch; } }();
}
return fan_in;

} // The client code below

gen = FanInProc(ch1, ch2, ch3);
next <- gen; // ch1_data
next <- gen; // ch3_data
next <- gen; // ch2_data

CSP - Common Patterns

Alexandru Burlacu Spring 2020

func FanOutProc(ch_in: Channel, chs_out: ListOfChannels): void {
for idx, val in enum(ch_in) {

go func () { chs_out[idx % len(chs_out)] <- val; }();
}

} // The client code below

FanOutProc(producer_ch, [consumer_ch1, consumer_ch2]);
// prod_data_1 -> consumer_ch1
// prod_data_2 -> consumer_ch2
// prod_data_3 -> consumer_ch1
// ...

CSP - Common Patterns

Alexandru Burlacu Spring 2020

Semaphores can be easily implemented using buffered channels. Although CSP focuses on
unbuffered channels for brevity, in practice it is possible to add a size to the channel, thus making
the communication asynchronous.
In such case, a semaphore is a buffered channel of some tokens.

// acquire n resources
func (s semaphore) P(n int) {
 e := empty{}
 for i := 0; i < n; i++ {
 s <- e
 }
}

CSP - Common Patterns

// release n resources
func (s semaphore) V(n int) {
 for i := 0; i < n; i++ {
 <-s
 }
}

Alexandru Burlacu Spring 2020

Having semaphores, it is now possible to implement mutexes and signaling mechanisms.

// mutex
func (s semaphore) Lock() {
 s.P(1)
}

func (s semaphore) Unlock() {
 s.V(1)
}

CSP - Common Patterns

// signaling
func (s semaphore) Signal() {
 s.V(1)
}

func (s semaphore) Wait(n int) {
 s.P(n)
}

Alexandru Burlacu Spring 2020

Sometimes, there’s a need to call multiple
functions but only a single result will suffice.

Say, you want to query a set of databases and
need to return the first arrived message.

In a language like go, you could do something
like the snippet on the right.

CSP - Common Patterns

func Query(
conns []Conn,
query string) Result {
ch := make(chan Result)
for _, conn := range conns {

 go func(c Conn) {
 select {
 case ch <- c.DoQuery(query):
 default:
 }
 }(conn)

}
return <-ch

}

Alexandru Burlacu Spring 2020

Regretfully the previous pattern results in K
times more queries, where K is the number of
connections.

We could modify the code on the left to query
the next connection after some time, rather than
right away, thus substantially reducing the load
on the servers.

This is called speculative execution, or
sometimes hedged requests.*

CSP - Common Patterns

func QueryV2(conns []Conn,
query string,
time_out time.After) Result {
ch := make(chan Result)

 var query func([]Conn)
 query = func(cs []Conn) {
 select {
 case ch <- c.DoQuery(query):
 case <- time.After(time_out):
 go query(conns[1:])
 }
 }
 go query (conns)

return <-ch
}

 * https://pdos.csail.mit.edu/6.824/papers/tail-dean.pdf

https://pdos.csail.mit.edu/6.824/papers/tail-dean.pdf

Alexandru Burlacu Spring 2020

A lot of good stuff is done using pipelines.

cat urls.txt | xargs -I % curl % |
echo - >> responses.txt

From the point of view of CSP, the `|` (pipe) is
a channel and the code between the pipes -
processes.

CSP - Common Patterns

func Proc(
in <-chan string) <-chan string {
ch := make(chan string)
for url := range <-in {

 go func(u string) {
 makeRequest(u)

 }(url)
}
return <-ch

}

Alexandru Burlacu Spring 2020

A lot of good stuff is done using pipelines.

cat urls.txt | xargs -I % curl % |
echo - >> responses.txt

From the point of view of CSP, the `|` (pipe) is
a channel and the code between the pipes -
processes.

Pipelines are good because each step can run
at the same time.

CSP - Common Patterns

func Proc(
in <-chan string) <-chan string {
ch := make(chan string)
for url := range <-in {

 go func(u string) {
 makeRequest(u)

 }(url)
}
return <-ch

}

Alexandru Burlacu Spring 2020

Combined with fan in and fan out patterns, it is possible now to create directed acyclic graphs of
computations. You should be excited now!

DAGs are a natural fit for data processing use cases. Many modern tools rely on this abstraction.

In fact, it is possible to define cyclic graphs too, but better don’t.
Cyclic graphs would result in much more complicated logic and debugging.

CSP - Common Patterns

Alexandru Burlacu Spring 2020

CSP - Common Patterns

Alexandru Burlacu Spring 2020

By default, channels in CSP are single element, or rather, are synchronization variables.

So, if I have processes P and Q and a common channel/event ch - (ch!in -> P) || (ch?out -> Q)
means that if I put a value in ch, my process will block until that value is fetched. This gives easy
way to synchronize processes, but is not always desired.

In practice, one can have buffered channels, that for example help a tiny bit when the producing
process sometimes works faster than the consuming one.

If that happens more than just sometimes, than different flow control techniques must be used.

CSP - Channel Size

Alexandru Burlacu Spring 2020

Now you already know pretty well both CSP and Actor Model. At least I hope so.

You know their main features, when to use them, and how to reason about these systems.

It’s probably time to learn how to divide work between concurrent (or parallel) entities to achieve
maximum performance.

CSP A quick not-so-off-topic #2

Alexandru Burlacu Spring 2020

When it comes to parallel and concurrent program design, it’s mostly about decomposition.

There are two main points of view that you must think of in the process.

Data and computation.

CSP A quick not-so-off-topic #2

Alexandru Burlacu Spring 2020

To achieve maximum performance, you must take into account the system your programs will be
running on.

Taking hardware into consideration when designing software is sometimes known as Mechanical
Sympathy.

A term first used not in software engineering, but more on that later. Like, a couple of weeks later.

Now let’s focus on pure (almost) software.

CSP A quick not-so-off-topic #2

Alexandru Burlacu Spring 2020

To design an efficient program running on a parallel processor and/or using concurrency efficiently
we need to understand the problem and what are the general patterns of solving it.

As said earlier, programs can be considered from the point of view of data, and of computation.

Using Flynn’s Taxonomy we can see the relations between different data-computation partitions.

CSP A quick not-so-off-topic #2

Alexandru Burlacu Spring 2020

This is Flynn’s Taxonomy.

SISD - single instruction, single data
SIMD - single instruction, multiple data
MISD - multiple instruction, single data
MIMD - multiple instruction, multiple data

Also consider:
SPMD and MPMD, where instead of Instructions
(I), Programs (P) are considered, relaxing the
lockstep requirement.

CSP A quick not-so-off-topic #2

Source: PAD course, “Distributia: spatii de decentralizare”, conf. univ. Ciorba Dumitru

Alexandru Burlacu Spring 2020

The objectives of parallel program design are:
- Maximize resource utilization
- Minimize communication overhead
- Ensure equal work distribution (Load balancing)

There are four steps in this process, as of Ian Foster:
- Decomposition
- Communication
- Agglomeration
- Mapping

CSP A quick not-so-off-topic #2

Source: “Designing and Building Parallel Programs”, Ian Foster

Alexandru Burlacu Spring 2020

Recall from earlier, the pipeline pattern from CSP.

This is the most basic way to achieve task parallelism. Task parallelism means dividing the program
into distinct tasks, each running independently and communicating with others.

Maybe you can even recall the example of parallel map over a sequence of values, from last course
(Network Programming). Well, that one is the most basic example of data parallelism.

CSP A quick not-so-off-topic #2

Alexandru Burlacu Spring 2020

Now, recall the DAG, also from the CSP lectures earlier.

DAGs can be used to achieve both Data and Task parallelism.

In fact, a DAG structured program can model any of the 4 variants of Flynn’s Taxonomy… almost, if
we ignore the lockstep requirement.

Enough theory, let’s analyze an example!

CSP A quick not-so-off-topic #2

Alexandru Burlacu Spring 2020

First, consider a naive matrix multiplication algorithm:
for i in 0..M:
 for j in 0..N:
 for k in 0..K:
 C[i, j] += A[i, k] * B[k, j]

How would you parallelize it?

CSP A quick not-so-off-topic #2

Alexandru Burlacu Spring 2020

for i in 0..M:
 for j in 0..N:
 for k in 0..K:
 C[i, j] += A[i, k] * B[k, j]

My proposition would be to make the outermost loop parallel. Why?

parallel for i in 0..M:
 for j in 0..N:
 for k in 0..K:
 C[i, j] += A[i, k] * B[k, j]

CSP A quick not-so-off-topic #2

Alexandru Burlacu Spring 2020

parallel for i in 0..M:
 for j in 0..N:
 for k in 0..K:
 C[i, j] += A[i, k] * B[k, j]

Modern processors have special instructions allowing SIMD operations. GCC and JVM (to a lesser
extent) can identify cases where it will work and apply the optimization.

parallel for i in 0..M:
 for j in 0..N:
 for k in 0..K..bsize: # bsize - batch size
 C[i, j] += A[i, k:k+bsize] * B[k:k+bsize, j]
 # let’s hope, and use -O2 and -mavx2 GCC flags to get more performance

CSP A quick not-so-off-topic #2

Alexandru Burlacu Spring 2020

Now, let’s say we have a chain of operations where we want to multiply 2 matrices and the result to
be added to the 3rd matrix.

The best way to do it, is to have the 2 operations combined, or “fused”. Btw, modern CPUs can also
combine multiplication and addition into a single very efficient operation.

for b in 0..(M/bsize): # bsize - batch size
 parallel for i in 0..M:
 for j in 0..N:
 for k in 0..K:

 temp = A[i, j, k] * B[i, k, b] + D[i, j, b]
 C[i, j, b] += temp
 # let’s hope, and use -O2, -mavx2, AND -mfma GCC flags

CSP A quick not-so-off-topic #2

Alexandru Burlacu Spring 2020

We all know there are better algorithms to multiply matrices, like Strassen algorithm.
Recall, it splits a matrix in blocks, then creates intermediary matrices M1 to M7 and multiplies them:
M1 = multiply(add(A11, A22), add(B11, B22));
M2 = multiply(add(A21, A22), B11);
M3 = multiply(A11, sub(B12, B22));
M4 = multiply(A22, sub(B21, B11));
M5 = multiply(add(A11, A12), B22);
M6 = multiply(sub(A21, A11), add(B11, B12));
M7 = multiply(sub(A12, A22), add(B21, B22));

Although not as performant in parallel as naive matmul, Strassen algorithm is a good case of divide et
impera (you should know that) which results into a recursive data decomposition, in contrast with
block decomposition of the naive matmul.

CSP A quick not-so-off-topic #2

Alexandru Burlacu Spring 2020

You can see that the matrix A on the left is
decomposed in blocks, while based on that B is
decomposed recursively.

Although recursive decomposition is more
flexible, it usually requires more coordination.

Some structures, like graphs, and problems are
more efficiently parallelized using recursive data
decomposition.

CSP A quick not-so-off-topic #2

Reactive Programming

Alexandru Burlacu Spring 2020

Alexandru Burlacu Spring 2020

Reactive Manifesto was first published in 2013, with an update in 2014 that proposes a new
mindset of system design, based on asynchronous message passing for communication, allow
decoupled entities to scale up and down, or be elastic, also, because of the 2 properties, such
systems would be resilient against failures, allowing components to fail and recover
independently, and as a result be responsive.

You should really read it: https://www.reactivemanifesto.org/

Reactive Manifesto

https://www.reactivemanifesto.org/

Alexandru Burlacu Spring 2020

Although both are working with events, there’s a subtle difference between Reactive programming
and Event-Driven programming, which entirely changes the game.

Event-driven programming model treats each event as a separate entity, whereas Reactive
programming, and specifically Reactive Streams are about treating events as parts of a stream,
and the go-to abstraction becomes the stream.

Reactive vs Event-Driven

Alexandru Burlacu Spring 2020

Quite around the same time as the Reactive Manifesto was proposed, a set of tools appeared,
called ReactiveX and a specification - Reactive Streams.

The core idea - treat events as an infinite stream of discrete values and work with these as they
arrive. Basically, it’s a combination of:

- Observer/PubSub Pattern (being notified of arrival, decoupling the Observers/Consumers)
- Iterator Pattern (obtain the elements of an aggregate object without knowledge of it’s

representation)

Now, why mix the Reactive Manifesto and Reactive Streams? Because one can treat external
services which send async messages as sources of data which can be “observed”. So Reactive
Streams would be a way to handle asynchronous messages both in big and small.

Reactive Manifesto in the small

Alexandru Burlacu Spring 2020

One important thing to understand about the inner workings of any Reactive Streams library is that
it is “push” based, as opposed to “pull”-based of a classical iterator.

Iterator/pulling data:
aList.stream()

.map({ s -> return s * 3.14})

.forEach({ println "next => " + it })

Observable from Rx/pushing data:
getMouseXLocation().debounce(100, TimeUnit.MILLISECONDS)

.map({ s -> return s / 100. })

.subscribe({ println "on next => " + it })

Reactive Manifesto in the small

Simple JS Implementation: https://netbasal.com/javascript-observables-under-the-hood-2423f760584
Complex JS Implementation: https://blog.eyas.sh/2019/07/learning-by-implementing-observables/

https://netbasal.com/javascript-observables-under-the-hood-2423f760584
https://blog.eyas.sh/2019/07/learning-by-implementing-observables/

Alexandru Burlacu Spring 2020

One important thing to understand about the inner workings of any Reactive Streams library is that
it is “push” based, as opposed to “pull”-based of a classical iterator.

Iterator is being pulled by the client code via next() method, whereas the Reactive Streams
observable can be subscribed to, which means that the subscriber/observer has to react on some
events, usually by specifying the onNext(smth) method.

The observers also specify the onComplete() and onError(err) methods.

Reactive Manifesto in the small

Alexandru Burlacu Spring 2020

Thinking reactive makes event-driven programs easier to work with. Including UIs, event
processing and notification systems.

Now, it is possible to define behaviours like “if there were more than 5 clicks within 2 seconds on
the button, change its color” using the event-driven paradigm, but it’s significantly more
cumbersome.

ReactiveX - Why?

Alexandru Burlacu Spring 2020

First and foremost, the ReactiveX set of libraries, for many programming languages, including
Swift, Java, C++, Python and JS, to mention a few.

Also, the core ideas are available in Akka (remember it?). Even if of higher granularity, the
principles are still the same.

Most recently, since Java 9, using Flow API will give you pretty much the same capabilities.

Oh, and since most of you are learning Elixir, check out GenStage ;)

ReactiveX - How?

Alexandru Burlacu Spring 2020

ReactiveX - How?

Inspired by Java 9 Flow API: https://community.oracle.com/docs/DOC-1006738

https://community.oracle.com/docs/DOC-1006738

Alexandru Burlacu Spring 2020

Recall what congestion control is from the Network Programming course.

Also, recall the relation between the congestion window and the receive window in TCP.

Backpressure

Alexandru Burlacu Spring 2020

Well, backpressure is related with congestion, only from a different point of view. In practice it
focuses on different use cases.

Whereas congestion is usually a phenomenon in the communication channel, be it network or
some abstract channel, backpressure is a phenomenon resulting from the consumer who can’t
cope with the amount of items arriving.

Backpressure

Alexandru Burlacu Spring 2020

TCP uses a so-called open loop congestion control mechanism, with its congestion windows.

In principle, backpressure can use a similar method, with minor tinkering with the timing of the
ack-s, and spoiler alert: it is used, sort of.

Generally, backpressure is a closed loop mechanism that notifies the producer that it can’t handle
anymore traffic. Depending on the type of the producer, different mechanisms could be used.

Backpressure

Alexandru Burlacu Spring 2020

There are 2 commonly known types of producers - hot and cold. The difference is in when and
how these are firing events.

Hot producers are the one that abstract away external sources with external control. They will fire
events no matter if there are subscribers listening or not.

Cold producers, on the other hand, are the ones that emit events only when there’s someone
listening. Cold producers can be quite easy handled.

A mouse listener is a hot producer. A file reader is a cold producer. And so is a producer emitting
events at specified intervals of time.

Backpressure: Hot & Cold producers

https://www.davesexton.com/blog/post/Hot-and-Cold-Observables.aspx

https://www.davesexton.com/blog/post/Hot-and-Cold-Observables.aspx

Alexandru Burlacu Spring 2020

Three common methods to handle non-blocking backpressure are known. If blocking is ok: block.
- Sampling or dropping of events sometimes is ok, for example in case of logging/tracing of

non-error events.
- Batching is another valid scheme. Collect events into groups and emit the groups at

specified intervals of time, or number of values in the group. Thus, reduce the rate of fire.
- Buffering, or having a queue to moderate the traffic, is only viable if the rate of arriving

events/items is variable.
Do not use buffering when producer constantly outperforms the consumer!

For methods used by RxJava: http://reactivex.io/documentation/operators/backpressure.html

Backpressure: Methods

http://reactivex.io/documentation/operators/backpressure.html

Alexandru Burlacu Spring 2020

Finally, there’s a method called “reactive pull” which basically forces the library user to handle
backpressure.

The idea is simple, at the end of the onNext() method call the Observer is responsible for
asking for more events. It doesn’t mean it’s pulling them. It just asks. Commonly, it asks for one
event, but in principle, can ask for more. Reactive pull is not usable with hot producers.

someObservable.subscribe(new Subscriber<T>() {
 public void onStart() { request(1); }
 // `onComplete` and `onError` omitted for brevity
 public void onNext(T n) {
 // do something with the emitted item "n", then request another item:
 request(1); // if `Long.MAX_VALUE`, not 1, producer will emit at its own rate
 }}); // RxJava 1.x example

Backpressure: “reactive pull”

Alexandru Burlacu Spring 2020

“You don’t have to be an engineer to be be a racing driver, but you do have to have Mechanical
Sympathy” - Jackie Stewart, F1 driver

Reactive Programming A quick not-so-off-topic #3

Alexandru Burlacu Spring 2020

Mechanical Sympathy means that in order to squeeze the most out of your system (application) you
must be conscious about its underlinings (hardware).

Good examples of applied mechanical sympathy is designing high performance web servers with
thread context switches times in mind.

Or designing C++ numerical libraries, taking into account the cache structure of CPU architectures.

For this off-topic, we will focus more on optimizing memory usage, by applying the idea of locality.

Reactive Programming A quick not-so-off-topic #3

Alexandru Burlacu Spring 2020

Locality, as the name implies, is about things that are close to each other. In the context of software
performance locality means that necessary things are efficiently accessed. Locality can be spatial
and temporal.

Most of the time we’re talking memory or spatial locality. Basically, you want to access your
memory in a predictable way that minimizes the times you hit the memory, or even the caches. Best
way to achieve this is via sequential access for disks and contiguous arrays for things stored in
memory.

A bit different, yet still valid, is CPU affinity (btw sometimes called CPU locality). It means you want
your communicating threads to be mapped on processors that are closer to each other, to minimize
communication cost and context switching times.

Reactive Programming A quick not-so-off-topic #3

Alexandru Burlacu Spring 2020

Short recap of
modern CPU
architectures and
memory hierarchy.

Registers (per CPU)
-> L1 cache
-> L2 cache
-> L3 cache
-> RAM (or simply
memory)
-> Disk (SSD
sometimes)

Reactive Programming A quick not-so-off-topic #3

Alexandru Burlacu Spring 2020

Based on the idea of CPU affinity, 2 threads that interact the most should be placed either in Tk and
Tk+1 where k is odd, if they don’t hold a lot of memory, or CPU k and CPU k+1 for k in {0, 2}. The
choice is based on the speed of cache access, and therefore its cleaning.
Always remember the stats below.
Latency Comparison Numbers (~2012) by Jeff Dean, reduced
--
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps network 10,000 ns 10 us
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD
Read 1 MB sequentially from memory 250,000 ns 250 us

Reactive Programming A quick not-so-off-topic #3

Alexandru Burlacu Spring 2020

Temporal Locality is related to structuring the program in such a way that things are accessed in a
clustered in time way. In human tongue - you try to re-access things that you recently accessed.

Why? Reducing the time between referencing some memory space/variable/whatever maximizes the
chance to get it from the closest (read most performant) cache. For example:

int A[10]; A[1]; A[2]; A[4]; A[2]; A[2]; A[4];

Although not very useful, this access pattern shows how some values are repeatedly accessed and
because of it are likely kept in the closest possible cache to you, thus reducing latency/increasing
throughput of operations.

Reactive Programming A quick not-so-off-topic #3

Spatial vs Temporal locality SO: https://stackoverflow.com/a/16554721

https://stackoverflow.com/a/16554721

Alexandru Burlacu Spring 2020

Cache structure
You might already be familiar with the notion of a cache. Generally it’s some sort of key-value store
(KVS). Now, CPU caches are similar, not identical to KVS, and are designed to contain lines of
caches. Think of a cache line as if the value in a KVS is actually a set of values.

There are 3 basic types of caches/cache placements:
1. Direct mapping
2. N-Way (set) associative mapping
3. Fully associative mapping

Understanding how the cache works is fundamental for a software engineer, even if he doesn’t aim to
squeeze the last effective FLOP/IOP from the hardware.

Reactive Programming A quick not-so-off-topic #3

Alexandru Burlacu Spring 2020

Cache structure: Misc
First thing that comes to mind when talking about caches is how to get rid of surplus data. That is,
eviction policy. Some of the simplest, yet universally applicable are: Least Recently Used (LRU),
Least Frequently Used (LFU), and FIFO. As the names imply, LRU discards the item that was used
least recently, while LFU the one that for some time was referred to least frequently, while FIFO will
work as a queue. Remember, for different use case scenarios other policies might work better.

Another thing to keep in mind when talking about caches is coherence. Like the movie.
Recall, every CPU has its own L1 and sometimes L2 caches, and it might be the case that multiple
CPUs work with the same value. Now, we need a mechanism that will propagate writes and order
transactions to all caches containing the value. Because lacking such mechanism can lead to
different values, in different caches, for the same cache entry. For that we have cache coherence
protocols.

Reactive Programming A quick not-so-off-topic #3

Alexandru Burlacu Spring 2020

Cache structure: Direct mapping
Direct mapping means the memory address from the
RAM can be inserted only in a single cache entry. It’s
fast, but unpredictable, leading to quite bad cache hit
ratio, which btw we try to maximize.

Let x be block number in cache, y be block number of
memory, and n be number of blocks in cache, then
mapping is done with the help of the equation
x = y mod n. If a collision occurs, than the older value
is swapped with the newer one, until next collision.

Reactive Programming A quick not-so-off-topic #3

Alexandru Burlacu Spring 2020

Cache structure: N-way set associative mapping
In the n-way set associative mapping the cache is
divided into so called ways, that can be interpreted
as yet another “collection” of values.

It uses an LRU bit, or set of bits, to specify which
was the least recently used way.

Because n-way set associative cache allows for
increased hit ratio it is frequently used. Keep in mind
that because of its structure it requires more memory
to keep the same number of entries.

Reactive Programming A quick not-so-off-topic #3

Alexandru Burlacu Spring 2020

Cache structure: Fully associative mapping

In case of fully associative cache mapping a memory address from the main memory can be mapped
to any cache entry. This is convenient, indeed, but comes at a high cost. In order to fetch an entry it
is necessary to check all entries in the cache.

Because it is time consuming modern CPUs usually either don’t use fully associative mapping, or use
it for very small caches, with a dozen or so of entries, or combine this kind of mapping with direct or
n-way associative mapping.

Reactive Programming A quick not-so-off-topic #3

Alexandru Burlacu Spring 2020

Worst to best hit ratio, and the best to worst access time, can be seen below.

- Direct mapped (DM) cache – good best-case time, but unpredictable in worst case
- 2-way set associative (2A) cache, effectively 2x better hit ratio than DM
- 4-way set associative (4A) cache, effectively 2x better hit ration than 2A
- 8-way set associative (8A) cache, a common choice for later implementations, although in

practice not 2x better than 4A
- Fully associative cache – the best hit ratio, but practical only for a small number of entries

Reactive Programming A quick not-so-off-topic #3

See: https://coffeebeforearch.github.io/2020/01/12/cache-associativity.html

https://coffeebeforearch.github.io/2020/01/12/cache-associativity.html

Alexandru Burlacu Spring 2020

Somewhat less frequently used when optimizing programs is the concept of branch prediction.

Branch prediction means that a CPU tries to predict the path that the program will take in order to
prepare future instructions. The problem is that sometimes it mis-predicts, resulting in (1) work done
in vain to prepare next set of instructions, and (2) necessity to cleanup and load another set of
instructions.

Recall from the table 4 slides before that a branch mispredict is about 5ns. In practical terms, to
reduce the effect of branch misprediction make sure that the most frequently accessed code path is
inside the if block, not the else.

The problem of branch prediction, and mispredictions, comes from the pipelined architecture of
modern processors.

Reactive Programming A quick not-so-off-topic #3

Alexandru Burlacu Spring 2020

Some things that you must keep in mind when optimizing for memory.

1. Know thy caches: getconf -a | grep CACHE
2. Make the data small and try use arrays/contiguous memory chunks wherever possible
3. When doing low-level: align your struct attributes fit a cache block/page/line sizes (find it using

1.)
4. When doing low-level: align your heap-allocated data using posix_memalign or similar
5. Access data in regular patterns, preferably sequentially or strided
6. If necessary to re-access some data, do it ASAP
7. If having a way to pin threads/programs to CPU, do it
8. If possible, keep most frequent code in if block, not in else
9. Most importantly, always profile the code and find its bottlenecks

Reactive Programming A quick not-so-off-topic #3

Alexandru Burlacu Spring 2020

● “Concurrent Object-Oriented Languages and the Inheritance Anomaly” by Dennis G.
Kafura and R. Greg Lavender

● “Actor Model of Computation for Scalable Robust Information Systems” by Carl Hewitt
(https://hal.archives-ouvertes.fr/hal-01163534v7/document)

● Elixir Getting started guide, Mix and OTP, chapters 2, 3, 4, 5
(https://elixir-lang.org/getting-started/mix-otp)

● “Communicating Sequential Processes” by Tony Hoare (http://www.usingcsp.com/)
● https://talks.golang.org/2013/advconc.slide
● https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harm

ful/
● https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
● https://fsharpforfunandprofit.com/posts/recipe-part2/

Reading list

https://hal.archives-ouvertes.fr/hal-01163534v7/document
https://elixir-lang.org/getting-started/mix-otp
http://www.usingcsp.com/
https://talks.golang.org/2013/advconc.slide
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
https://fsharpforfunandprofit.com/posts/recipe-part2/

Alexandru Burlacu Spring 2020

Software Transactional Memory (STM), Inheritance Anomaly,
Memory Thrashing, Lock-free algorithms
Systolic Array, Hypercube Algorithm/Topology, Superscalar architecture

Keywords (Good to know)

Message Brokers

Alexandru Burlacu Spring 2020

Alexandru Burlacu Spring 2020

Recall the PubSub pattern.

Now what if we have multiple publishers and any subscriber wants to subscribe to some of them?

Eventually it will become a mess. Recall from graph theory the bipartite graphs, and how many
connections can be there if the graph is, God forbid, complete.

For 7 subscribers and 3 publishers we have at most 21 connections to manage, that’s quite
cumbersome. In practice, we may have hundreds on each side. Do the math and be scared.

Message Broker?

Alexandru Burlacu Spring 2020

What if we can have an intermediary, like a post office?

Message Broker?

Alexandru Burlacu Spring 2020

Enter the Message Broker!

Message Broker?

Alexandru Burlacu Spring 2020

A message broker is an architectural pattern that is most useful for (1) decoupling of sub-systems
and (2) integration of different systems, each with its own messaging protocol.

If the first one is already clear, how about the second point?

Say, you have a couple of 3rd party APIs, some core business modules, one of which is legacy
code, and the application logic. How can you make it all work together?

Message Broker

Alexandru Burlacu Spring 2020

Say, you have a couple of 3rd party APIs, some core business modules, one of which is legacy
code, and the application logic. How can you make it all work together?

There are 3 most common answers:

1. Have them share files. This is the most basic one.
2. Another way, maybe make it possible for the sub-systems to share a database.
3. And finally, let them pass messages.

Guess which one is considered best practice?

Message Broker

Alexandru Burlacu Spring 2020

Now, you might be wondering, why not write some adapters and have them communicate via
HTTP for example?

It turns out that in the end they would still pass messages, in a request-response fashion, so it’s
fine, sort of, because…

Secondly, point-to-point communication becomes complex pretty fast. Besides, recall, we also
need adapters, and this means for each pair of message formats/APIs we will need separate
adapters. Yuk!

Message Broker

Alexandru Burlacu Spring 2020

So, message brokers. You can think of them as some sort of a chat for your applications. Just
don’t take it too literally.

For a message broker to be useful it must enable its users at least the following functionality:

- Topics/Channels
- A way to subscribe and unsubscribe from it
- A clear message format (Preferably the message must be self contained, more on this later)

Message Broker

Alexandru Burlacu Spring 2020

Note that message brokers are more of a concept, where’s message queues are an actual
implementation that is a message broker, just with a queue for the messages that arrive.

Another side note is the difference between a message broker and an event bus. Event buses are
a way to use message brokers in a distributed system. Namely, an event bus is used specifically
as a medium to transmit messages encoding events for services to react to.

For example an API service might emit to the Event bus a message of type UserLogedInEvent to
which the newsfeed service will react by fetching the latest news and wrapping them into
NewsFeedUpdateMessage.

Message Broker

Alexandru Burlacu Spring 2020

Some modern implementations allow for much more than that, for example, Apache Kafka, which
is many things, including a message queue, has distribution capabilities, durable message
storage, and since recently exactly once message delivery semantics.

Other implementations might suport dead letter channels, for messages that couldn’t be sent,
message converters, very useful for integration use cases and other capabilities.

Message Broker

Alexandru Burlacu Spring 2020

Recall the chat analogy?

Just as with a chat, a message broker usually is much more useful when it has a way to broadcast
messages, or to be more technical, to multicast them.

The way to multicast messages for message brokers is to use so-called topics sometimes also
called channels.

Message Broker

Alexandru Burlacu Spring 2020

Topics are like group chats. And a topic always involves more than one consumer.

Think of it, you have a service that emits a message that is interesting for a number of other
services. You can publish it into a topic and other services will subscribe to it, thus decoupling
publishers from subscribers even more.

Message Broker

Alexandru Burlacu Spring 2020

Topics for
Message Brokers

You can create new topics
either on the producer or
consumer side.

What if the topic is generated
on producer side and there
are no consumer services to
read from it?

Message Broker?

Alexandru Burlacu Spring 2020

The answer to the previous question, as usually in SWE is: it depends.

If you don’t care about those messages, just drop them. But what if you do?

Then you need to keep the arriving messages and send them over when an interested consumer
subscribes.

This technique is referred to as durable topics, or durable queues, depending on the system and
its architecture.

Note that durability does not necessarily imply written to non-volatile (like disk) storage.

Message Broker

Alexandru Burlacu Spring 2020

Another use case: what if your broker crashes mid-processing the message, and you have a
zero-loss requirement?

As a solution, store on disk the messages while being processed, a technique referred to as
persistent messages. Keep in mind, this is safe but slow, because of the disk, duh.

You can put them into some file, database or maybe a log (like Kafka does).

Remember, persistence is about messages being written to disk, this helps if things go south
while processing them. Durability is about the subscriptions, or rather, the messages that must be
sent to the consumer but it is disconnected from the broker.

Message Broker

Alexandru Burlacu Spring 2020

Now for misc. stuff.

1. Q: What if a non-persistent message is sent to a non-durable topic?
A: If (1) broker fails or (2) subscriber is not connected, message is dropped

2. Q: What if a non-persistent message is sent to a durable topic?
A: Message is lost only if the broker fails

3. Q: What if a persistent message is sent to a non-durable topic?
A: If the subscriber is not connected, message is dropped

4. Q: What if a persistent message is sent to a durable topic?
A: Congratulations, you have achieved zero-loss messaging… but did you need it?

Message Broker

Alexandru Burlacu Spring 2020

Apache Kafka is a message queue, but also an event/stream processing platform, but also can be
used for storage, and analytics, and integration… it’s a lot of things.

Apache Kafka is a bit different than “your usual message broker” in that it is not a simple relay,
receiving messages and forwarding them to a specific consumer, but rather it is a persistent log
which acts like a queue.

Kafka was built with scalability and fault tolerance in mind, and that drove the architecture towards
the log-like structure and the possibility to partition data across many servers.

Kafka, kafka, kafka… what’s that again?

Alexandru Burlacu Spring 2020

Each topic in Apache Kafka has
its own “log file” and can be
replicated among multiple
servers, to ensure that if a server
crashes, the messages will be
delivered anyway.

To keep track of which message
each consumer has to read, they
use offsets, like pointers to where
is the next message to be read.

Kafka, kafka, kafka… what’s that again?

Alexandru Burlacu Spring 2020

In fact, each topic can be further splitted into multiple
log files by some key, to keep the write ordered. This is
called a topic partition.

A key can be some special property, or maybe some
id/hash modulo the number of partitions.

Also, because of topic partitioning it is possible to
greatly increase the throughput of the system.
Regretfully, due to the persistent nature of Apache
Kafka, it’s not the best for low-latency communication.

Kafka, kafka, kafka… what’s that again?

Image source: https://kafka.apache.org/documentation/#intro_concepts_and_terms

https://kafka.apache.org/documentation/#intro_concepts_and_terms

Alexandru Burlacu Spring 2020

Events in a topic can be read as often as needed—unlike traditional messaging systems, events
are not deleted after consumption.

Instead, you define for how long Kafka should retain your events through a per-topic configuration
setting, after which old events will be discarded. It can be a couple of seconds or even a hundred
years. This opens it for some exotic use cases, like using Kafka for analytics, or storage (See Event
Sourcing).

Kafka's performance is effectively constant with respect to data size, so storing data for a long
time is perfectly fine.

Kafka, kafka, kafka… what’s that again?

Alexandru Burlacu Spring 2020

According to Enterprise Integration Patterns book, which you are btw required to skim through for
the exam, there are different types of messages, based on their intent, and some concerns about
them.

- Messages could represent an action to be taken, a Command, the result of it, a Document,
or maybe a change in the sender, an Event.

- Messages could be sent to be responded to, then you need to embed a Return Address in
it, like with actors, do you recall? Also, keep in mind that the receiver is probably working
with multiple messages at the same time, that’s why you might also need a Correlation
Identifier.

- Now, what if the response for a given message is huge? Take an inspiration from how TCP
works and send a Message Sequence.

- Finally, what if the message is plain slow? What could happen if it is a Command Message
and it comes to late? Having an Expiration date for it could minimize the impact.

Message Broker - The Messages

Alexandru Burlacu Spring 2020

Everytime using messages as means for communication, consider making them self-contained.

But what does it mean?

Basically, make the messages contain all the information you need to make them actionable, so
that you don’t need to pass or keep some additional context or depend on some state.

The point of it is that you should strive to include sufficient information in the message so the state
that is relevant to the current request is fully represented—removing and relocating relevant
information should be considered a premature optimization until proven otherwise.

Message Broker - The Messages

Alexandru Burlacu Spring 2020

For example, say you want to pass a document message FetchedNewsFeed, what do you think it
should contain?

Should it contain the data representing the news feed? Or maybe it can use a reference to where
this data is stored?

Also, should it contain the user for this given news feed?

Now, what if it’s not a document message, but a command message, that is FetchNewsFeed?
What has changed?

Message Broker - The Messages

Alexandru Burlacu Spring 2020

Having an Expiration time for a message is considered good practice, especially when your
messages are modifying some state.

Expiration is only useful when there are chances that some messages can be slower than others,
usually something like this could happen if your message broker works in a non-deterministic
(read concurrent) or simply some major network problem is possible.

Expiration won’t, for example, save you from lack of ordered delivery of messages, or duplicate
messages.

Message Broker - The Messages

Alexandru Burlacu Spring 2020

Suppose you’re sending multiple messages to some other service, and that it will reply to them as
soon as it’s done with a given message, thus, there’s a chance the reply order could be different
then the sent order.

Enter correlation identifiers. Simply put, it’s an id value that is part of the message and which
purpose is to re-identify the message.

Efficient usage of correlation identifiers allows for example to even reply to a message from a
service different then the initial receiver of the message.

Correlation identifiers can be even used as means for tracing the messages inside a system,
although this is an entirely different matter.

Message Broker - The Messages

Alexandru Burlacu Spring 2020

Recall at the beginning of this chapter there was a statement about message brokers being an
important integration tool.

The capability of messages brokers to work as converters, or Message Translators, is among the
main features that enable them to the go-to integration tools.

Usually Message Translators can be either a plug-in component for a message broker or even a
separate component in a bigger messaging system.

A message translator is the messaging equivalent of a GoF Adapter.

Message Broker - Few Patterns

Alexandru Burlacu Spring 2020

Message brokers usually imply a bigger, message
oriented system.

In such a scenario it is not uncommon to have a
message sent to some service and it
subsequently being transmitted further until at
some point “replied to” by a service different than
the first receiver.

In any case, if the transitions are known
beforehand by the sender and encoded into the
message, this type of behaviour is known as
Routing Slip.

Message Broker - Few Patterns

Alexandru Burlacu Spring 2020

Sometimes we may also want to change the
routing rules depending on the current state of
the system. We can use the dynamic routing
pattern for that.

All subscribers in this case know about a special
control channel through which they can send
command messages to the router/broker such
that the following messages are distributed
differently.

One use case for this can be more fine grained
load balancing.

Message Broker - Few Patterns

Alexandru Burlacu Spring 2020

Another feature that is possible to use in combination with message brokers is to have Content
Based Routing. Namely to have the broker decide where to forward the messages depending on
the data that is there and not through a topic/recipients list.

Say the message broker receives the message that has XML data, that mentions payroll, then it
will pass the message to the bookkeeping related services.

This feature must be used carefully, because it might result in a very big, fat message broker with
numerous responsibilities.

On the other hand, it further minimizes the coupling between the services. Now they don’t even
have to know the topics or services to which they are sending messages.

Message Broker - Few Patterns

MQTT and XMPP

Alexandru Burlacu Spring 2020

Alexandru Burlacu Spring 2020

MQTT, or message queue telemetry transport protocol is an open ISO standard, designed for
inter-device, message-based communication that is lightweight, and primarily supports
publish-subscribe pattern.

The protocol runs by default over TCP/IP, however, any network protocol that provides ordered,
lossless, bi-directional connections can support MQTT.

It is designed for connections with remote locations where a small code footprint is required or the
network bandwidth is limited. That’s why it is primarily used for IoT systems.

MQTT - Overview

Alexandru Burlacu Spring 2020

The protocol was initially invented to monitor an oil pipeline in the dessert, and the communication
link was via a satellite. It was 1999. After that the protocol was developed primarily by IBM.

For even more constrained environments there was developed MQTT for Sensor Networks, aka
MQTT-SN that could swap the TCP/IP foundation with something else, like Bluetooth or UDP.

Such vendors as Azure and Amazon provide integration hubs with some support for MQTT. Just in
case you seek to develop an IoT system.

MQTT - Overview

Alexandru Burlacu Spring 2020

First, you need to understand the high level parts of MQTT, namely the topics and the messages,
after which some more advanced features will be explained to you.

One more thing, although it has MQ (message queue) in the name, MQTT does not provide
message queue capabilities, only message broker ones.

Let’s start with topics.

Generally, topics are topics, as in a general message broker. What you need to know is the naming
convention. home/kitchen/coffee_grinder is a valid topic, the / are used to divide into
subtopics. Also, topics are case sensitive.

MQTT - Protocol Details

Alexandru Burlacu Spring 2020

Now, messages. MQTT, as of version 3.1, has 14 types of these. These are called control
messages although they are used for data transfer too. An MQTT message can be as small as 2
bytes and as big as a couple hundred MBs. Server - s, client - c.

- CONNECT (c2s) and CONNACK (s2c), and DISCONNECT (c2s) to handle connection
- PUBLISH and PUBACK, and PUBREC, and PUBREL, and PUBCOMP for publishing,

different kinds of acknowledgement depending on the QoS (later), also the message is
bidirectional

- SUBSCRIBE (c2s) and SUBACK (s2c), to subscribe to some topic
- PINGREQ (c2s) and PINGRESP (s2c), to PING the broker
- UNSUBSCRIBE (c2s) and UNSUBACK (s2c), to unsubscribe from some topic

MQTT - Protocol Details

For more info check: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html

Alexandru Burlacu Spring 2020

A nice thing about MQTT are the so-called retained messages. These are normal MQTT
messages that have the retained flag enabled, thus when they are received by a broker and should
be forwarded to the subscribers of some topic, if there are no subscribers, the message will be
persisted.

Only a single, latest, such message is allowed per topic, and it’s raison d'être is for the subscriber
to receive the updates right away and not wait until the next message on the topic.

MQTT - Protocol Details

Alexandru Burlacu Spring 2020

Each connection to the broker can specify a quality of service measure. These are classified in
increasing order of overhead:

- At most once (qos 0) - the message is sent only once and the client and broker take no
additional steps to acknowledge delivery (fire and forget).

- At least once (qos 1) - the message is re-tried by the sender multiple times until
acknowledgement is received (acknowledged delivery).

- Exactly once (qos 2) - the sender and receiver engage in a two-level handshake to ensure
only one copy of the message is received (assured delivery).

Most of the existing IoT hubs from cloud vendors do not support qos 2 and will either throw an
error or downgrade you to the highest available qos, which usually is 1.

MQTT QoS

For a detailed overview, see: https://www.emqx.io/blog/introduction-to-mqtt-qos

https://www.emqx.io/blog/introduction-to-mqtt-qos

Alexandru Burlacu Spring 2020

eXtensible Messaging and Presence Protocol (XMPP) was primarily developed for chat systems,
but eventually became one of the most used protocols for IoT systems. It has also been used for
VoIP and gaming.

Just like MQTT it was initially developed sometime around 1999, and was known as Jabber
protocol.

XMPP uses XML for messages. Basically it streams chunks of XML.

XMPP - Overview

Alexandru Burlacu Spring 2020

XMPP is primarily used for instant messaging (IM) and because of that it provides not just
messaging but also presence capabilities.

Presence means the capability to see the status of your contacts. Think Online/Offline/Away/et
cetera in Skype.

Because of XMPP’s native support for XML it is an extremely good protocol for
machine-to-machine communication and software integration.

XMPP - Overview

Alexandru Burlacu Spring 2020

The basic unit of communication for XMPP is the so-called stanza, and there are 3 of these:
<message> - this one should be self-explanatory, <presence> - used to inform the status of the
contact and <iq> (Info/Query) used to either get information or apply some settings.

<message
from=”SenderName”
id=”SomeId”
to=”ReceiverName”
type=”groupchat/chat/normal/error/headline”>
<body></body>

</message>

XMPP - Protocol Description

Alexandru Burlacu Spring 2020

There are a number of types of message stanza:
- normal, which is a message that is sent without it being part of a chat
- chat, a message meant to create or continue a p2p chat
- groupchat, think of it as multicast, or, as a group chat
- error, in case of some error
- headline, is a broadcast message, like an announcement, or news

Headline and error are not expected to be repliable, while normal, chat and groupchat are.

XMPP - Protocol Description

Alexandru Burlacu Spring 2020

A message stanza also can contain a number of children tags, namely a <body>, which is
mandatory, but also a <subject> and a <thread> children are possible.

Threads allow mail thread-like capabilities, or Slack-like reply to a message in the channel.

The <subject> tag can be used to model topics, and it is allowed for a message to have multiple
subjects.

https://xmpp.org/rfcs/rfc3921.html

XMPP - Protocol Description

https://xmpp.org/rfcs/rfc3921.html

Alexandru Burlacu Spring 2020

XMPP supports Publish-Subscribe, Request-Reply and Asynchronous Messaging.

XMPP is like email, anyone can become a server and communicate with everyone else.

XMPP is eXtensible, remember? Therefore there are XEP or XMPP Extension Protocols, that allow
support for monitoring, working with sensors and other perks.

XMPP doesn’t have Quality of Service and it is text-based. Therefore not the best choice when
resource constrained.

XMPP - Supported Patterns

Alexandru Burlacu Spring 2020

● http://zguide.zeromq.org/page:all
● “Enterprise Integration Patterns” - Gregor Hohpe and Bobby Woolf

https://www.enterpriseintegrationpatterns.com/docs/EDA.pdf

Reading list

http://zguide.zeromq.org/page:all
https://www.enterpriseintegrationpatterns.com/docs/EDA.pdf

Alexandru Burlacu Spring 2020

AMQP Protocol, RabbitMQ Architecture
ZigBee, Constrained Application Protocol (CoAP)

Keywords (Good to know)

